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How categories are represented continues to be hotly debated
across neuroscience and psychology. One topic that is central to
cognitive research on category representation but underexplored in
neurobiological research concerns the internal structure of cat-
egories. Internal structure refers to how the natural variability
between-category members is coded so that we are able to deter-
mine which members are more typical or better examples of their
category. Psychological categorization models offer tools for pre-
dicting internal structure and suggest that perceptions of typicality
arise from similarities between the representations of category
members in a psychological space. Inspired by these models, we
develop a neural typicality measure that allows us to measure
which category members elicit patterns of activation that are
similar to other members of their category and are thus more
central in a neural space. Using an artificial categorization task, we
test how psychological and physical typicality contribute to neural
typicality, and find that neural typicality in occipital and temporal
regions is significantly correlated with subjects’ perceptions of typi-
cality. The results reveal a convergence between psychological and
neural category representations and suggest that our neural typical-
ity measure is a useful tool for connecting psychological and neural
measures of internal category structure.
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Introduction

Categorization is a fundamental process that underlies many
aspects of cognition. By grouping alike objects together, cat-
egories enable people to generalize knowledge of previously
encountered category members to novel ones. Research on
categorization seeks to understand how categories are rep-
resented and what the implications of this representational
structure are for behavior and thought.

Neurobiological research on visual categorization has ident-
ified a number of regions that are involved in representing
specific aspects of categories. Regions of the visual stream
represent information about the features associated with cat-
egory members (Riesenhuber and Poggio 1999; Palmeri and
Gauthier 2004). The prefrontal cortex (PFC) is thought to rep-
resent behaviorally relevant aspects of categories such as
rules associated with category membership (Ashby et al.
1998; Smith et al. 1998; Miller et al. 2002; Freedman et al.
2003; Ashby and Maddox 2005). Motor and premotor regions
may represent habitual responses associated with specific cat-
egories (Seger and Miller 2010). The medial temporal lobe
(MTL) and subregions of the striatum are thought to bind to-
gether aspects of category representations from these other
systems. Cortico-striatal visual and motor loops are thought to
connect visual stimulus representations with category
responses using associative learning (Maddox and Ashby

2004; Seger and Cincotta 2006; Seger 2008; Davis et al.
2012a), whereas the MTLs are thought to represent categories
with clusters that join visual information with category-level
and behavioral information (e.g., membership, rules) into
flexible conjunctions that can be applied across tasks (Love
and Gureckis 2007; Davis et al. 2012a, 2012b).

Each of the primary anatomical regions involved in categor-
ization may contain information that can be used to discrimi-
nate between categories, a hallmark of category representation
that has been emphasized in many recent multivariate and
machine learning studies of neural representation (Norman
et al. 2006; Diana et al. 2008; Kriegeskorte, Mur, Ruff et al.
2008; Liang et al. 2013). For example, patterns of activation
elicited for different objects in regions of the visual stream
(Haxby et al. 2001; Spiridon and Kanwisher 2002; O’Toole
et al. 2005; Kriegeskorte, Mur, Ruff et al. 2008) and MTL
(Diana et al. 2008; Liang et al. 2013) have been found to
contain information that can be used to reliably discriminate
between many real world object categories. Similarly, neurons
in the PFC can discriminate between categories (Freedman
et al. 2003) and are theorized to be particularly sensitive to be-
haviorally relevant differences between stimuli (Pan and Saka-
gami 2012).

Although coding for differences between categories is one
key aspect of category representation, organisms also use cat-
egories for a number of other functions such as predicting
and inferring features of unseen or novel category members
or deciding how characteristic an object is of its category
(Markman and Ross 2003). In this way, category represen-
tations must not only contain information about how objects
differ between categories, but also how objects differ within
categories. The manner in which people represent the varia-
bility between members within a category is referred to as a
category’s internal structure (Rosch 1973; Rosch and Mervis
1975). Internal structure allows us to answer such questions
as how likely or typical feature combinations (e.g., size, wing-
span, and mating habits) are for a given category (e.g., birds),
and influences how rapidly and accurately objects are classi-
fied (Posner and Keele 1968; Rosch et al. 1976).

Formal cognitive models can offer insight into how internal
structure is represented psychologically and in the brain. In
many similarity-based categorization models, category
members are represented as points in a multidimensional
psychological space (Nosofsky 1986; Ashby and Maddox
1993; Kruschke 1992; Love et al. 2004; Minda and Smith 2002;
see also Edelman 1998; Gärdenfors 2004). Depending on the
specific model, a category representation may be a set of
points associated with a given category (exemplar models; No-
sofsky 1986), a summary statistic (prototype models; Minda
and Smith 2002), or a set of statistics (clustering models; Love
et al. 2004; Vanpaemel and Storms 2008) computed over
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points associated with a category. A category’s internal struc-
ture is thought to be reflected in the similarity relations
between items and category representations. Category
members that are more similar to other members of their cat-
egory or are nearer to the category prototypes or clusters in a
representational space are predicted to be the most typical or
likely (Fig. 1A).

Formal categorization models are related to mathematical
tools that estimate the likelihood or density of particular fea-
tures or feature combinations from physical or statistical de-
scriptions of objects in the world (Ashby and Alfonso-Reese

1995; Rosseel 2002; Jakel et al. 2009). The key difference
between-categorization models and density estimators is that
the psychological spaces that underlie categorization are not
taken to be veridical representations of the physical world but
are rather representations that are affected by psychological
factors like learning and attention (Nosofsky 1992; Love
2005). Indeed, although early theories of categorization
suggested that psychological internal structure mirrored the
physical world, such that objects that are actually the most
likely or average for their category are viewed as most typical
(Rosch 1973; Rosch and Mervis 1975), there are many

Figure 1. (A) (Left) A hypothetical representation of a “Food space” with respect to carbohydrate and fat content dimensions (values are grams per serving). Members of the
categories grains, meats, vegetables, and desserts are represented as points in the space. (Right) Gives the typicality (or density) of each meat item, collapsing over the
carbohydrate dimension. Typicality estimates for meats were generated from an exemplar model with specificity parameter equal to 1/within meat variance (see Supplementary
Material Equations). (B) An illustration of the neural typicality measure. The top row of birds is depicted in terms of increasing idealness with respect to category B (ideal is tall
and high neck angle). Each bird elicits a pattern of activation given by the red and yellow boxes underneath the bird. In this example, 2 target bird’s activation patterns (left), a
more ambiguous category member (bird 1), and an idealized category member (bird 5), are compared with each other bird’s activation patterns and similarity is calculated. The
pairwise similarities are then summed to yield the neural typicality measure. Because bird 5’s activation is more similar to other members of the category, it has a higher neural
typicality than bird 1.
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examples where this relationship does not hold. For example,
culture can emphasize particular dimensions of objects differ-
ently, leading to different notions of what is typical of a cat-
egory (Atran 1999; Lynch et al. 2000; Medin and Atran 2004;
Burnett et al. 2005). Likewise, contrast (Davis and Love 2010)
and goals (Barsalou 1985) can lead people to perceive carica-
tured or idealized items as typical even though they are not
physically average. For example, in the category diet foods,
ideal category members are often seen as more typical than
physically average members (Barsalou 1985); energy sources
(wind, solar, coal, nuclear) can appear as more or less pollut-
ing depending on how they are contrasted with one another
during learning (Davis and Love 2010). Ongoing research
seeks to explain the psychological mechanisms that can trans-
form a physical category space into psychological represen-
tations, and thus relate objective physical category structures
to psychological ones (Davis and Love 2010). Here, our goal
is to develop a method for measuring the internal structure of
neural category representations and test how it relates to
physical and psychological measures of internal structure.

Categorization models offer insight into how the internal
structure of neural representations can be measured in fMRI
data. Here, we develop an exemplar-based measure of neural
typicality that is based on the similarity between patterns of
activation elicited for an object and all other members of its
category. This neural typicality measure relates to how exem-
plar models measure the similarity between an item and other
members of its category in psychological space (Nosofsky
1986; Estes 1996) and predict typicality ratings from psycho-
logical representations (Nosofsky 1988). Mathematically, this
neural typicality measure bears relations to nonparametric
kernel density estimators (Ashby and Alfonso-Reese 1995),
which are used to predict how likely particular features are
given some distribution of objects in the world. A key differ-
ence between our measure and related psychological and stat-
istical models is that instead of using psychological or
physical exemplar representations, our measure of neural ty-
picality is computed over neural activation patterns, thus
giving an estimate of the extent to which an object elicits acti-
vation patterns that are like the other members of its category.

Formally, our neural typicality measure is based on the dis-
tance d between patterns of activation elicited for a stimulus i
and those elicited for other j members of its category
(Fig. 1B):

dij ¼
1� corrðbi;bjÞ

2
; ð1Þ

where the β’s are trial-by-trial β-series estimates of the pattern
of activation elicited for each j stimulus. A Pearson correlation
distance metric is used because it normalizes for differences
in mean activation level and variability between stimuli. This
property makes correlation distance potentially less suscep-
tible to differences in univariate activation between stimuli
than other distance metrics (Kriegeskorte, Mur, Bandettini
et al. 2008), assuming that the distribution of activation over
voxels within an region of interest (ROI) is homogenous and
does not reflect a mixture of signals.

The distance between the activation patterns for i and j is
transformed to similarity by:

Sij ¼ expð�dijÞ; ð2Þ

where the exponential instantiates a generalization gradient
that determines the form by which similarity decreases as a
function of the distance between the patterns of activation for
stimulus i and j. Statistically, instituting a generalization gradi-
ent reduces the impact of stimuli that are distant from stimu-
lus i on the neural typicality computation. The exponential
gradient is a common choice in exemplar models following
the finding that the relationship between distance and simi-
larity in psychological spaces tends to be exponential (She-
pard’s Universal Law; Shepard 1987).

Finally, neural typicality (typ) is computed by summing
the pairwise similarities between i and each j member of
Category J:

typðij JÞ ¼
X

j[J

Sij : ð3Þ

Objects eliciting patterns of activation that are similar to those
elicited by other members of their category are more neurally
typical than objects that elicit dissimilar patterns of activation.

By obtaining a measure of an item’s neural typicality, or
averageness of an item’s activation pattern with respect to
other members of its category, it is possible to test how differ-
ent psychological and physical factors influence the internal
structure of neural category representations. Here, we test
how physical and psychological measures of typicality are re-
flected in our neural typicality measure in a task in which
physical and psychological typicality favor different items.
Our primary hypothesis is that neural and psychological rep-
resentations will be linked such that items judged to be
typical by subjects will be those that elicit patterns of acti-
vation most like other members of their category.

In the present task, subjects learn, using trial and error, to
categorize schematic birds that vary along 2 perceptual di-
mensions (leg length and neck angle) into 4 categories
(Fig. 2A). Previous research has found that this type of
category-learning task leads to an internal structure that
favors physically idealized items (Fig. 2B; Davis and Love
2010) because the categories contrast highly with one
another. That is, in terms of subjects’ psychological similarity
space, objects that are more physically idealized or caricatured
(e.g., tall birds with a high neck angle in category B; Fig. 2B)
tend to be viewed as the most typical of their categories and
are classified more rapidly and accurately as opposed to those
that are actually the most physically similar to other category
members. Likewise, when subjects are asked to reconstruct,
from memory, an average category member, their reconstruc-
tions tend to be caricatured relative to the true category
averages (Davis and Love 2010). Together, these results
suggest that, in subjects’ psychological similarity spaces, ideal-
ized items are those that are represented as the most likely or
the most similar to other members of their category.

Because the task is highly controlled and its effects on
psychological measures of internal structure have been well
characterized by previous research (Davis and Love 2010), it
is straightforward to make predictions about how internal
structure will manifest in the observed neural activation pat-
terns. Specifically, because physical and psychological typical-
ity are dissociable, it is possible to make divergent predictions
for how the neural typicality gradients would appear if they
reflected physical similarity (i.e., physical averageness; see
Fig. 2C) versus psychological typicality (Fig. 2B).
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Our primary hypothesis is that psychological and neural
measures of internal structure will be linked, without regard
to where in the brain this might occur. However, given pre-
vious literature on object and category representations, it is
also possible to make predictions regarding which specific
regions will be sensitive to internal structure. Because internal
structure is inherently dependent on representing differences
between stimuli, the convergence between neural and
psychological measures of internal structure is likely to occur
in regions of the brain that represent the constituent features
of stimuli within a task. In visual categorization, these differ-
ences between stimuli are thought be represented in regions
of the visual cortex (Freedman et al. 2003; Seger and Miller
2010). Here, we expect that early visual cortex will represent
internal structure, because early visual cortex has been theo-
rized to represent simple visual categories in previous categ-
orization research (Reber et al. 1998, 2003; Aizenstein et al.
2000; Zeithamova et al. 2008; for review, see Ashby and
Maddox 2005) and is sensitive to primitive features like
length and angle (Haynes and Rees 2005; Kamitani and Tong
2005) and information about retinotopic location (Engel et al.
1997). We also expect higher level temporal and medial tem-
poral regions to be sensitive to internal structure because
these regions are theorized to bind together features from
early visual regions into flexible conjunctive category rep-
resentations (Davis et al. 2012a, 2012b).

Other regions that are involved in aspects of categorization
are thought to be less sensitive to featural differences
between stimuli and more to behavioral differences (i.e.,
differences in responses or rules) or process-level differences
(i.e., uncertainty processing) that are not specific to categories
or individual stimuli. We employ between-category classifi-
cation analyses to examine how regions of the brain discrimi-
nate between members of different categories and on the
basis of behavioral response. Regions of the brain like the

PFC and motor/premotor cortex are thought to abstract over
differences within categories and be sensitive to behavioral
differences between categories (e.g., rules; Freedman et al.
2003; Maddox and Ashby 2004; Pan and Sakagami 2012). We
also employ univariate activation measures that are thought to
be sensitive to psychological processes (Jimura and Poldrack
2011). One type of process that differs between stimuli within
categories and is related to typicality is uncertainty proces-
sing. Regions of the ventral striatum are known to be sensitive
to entropy or uncertainty processing (Grindband et al. 2006;
Davis et al. 2012b) and may correlate with psychological typi-
cality in the present task.

To foreshadow the results, we find that neural typicality
significantly correlates with subjects’ perceptions of typicality
in early visual regions as well as regions of the temporal and
medial temporal cortex. These results suggest that neural and
psychological representational spaces are linked and validate
the neural typicality measure as a useful tool for uncovering
the aspects of category representations coded by specific
brain regions.

Materials and Methods

Subjects
Seventeen young adult volunteers (ages 18–40 years; 7 females) par-
ticipated in the study for $25/h compensation. Data from 4 subjects
were excluded, 2 due to imaging artifacts and 2 for failing to learn the
task. Each participant provided signed informed consent to partici-
pate in the study, and all procedures were approved by the IRB of the
University of Texas at Austin.

Design
In the experiment, subjects learned how to categorize novel line-
drawn birds into 4 categories (A, B, C, and D; Fig. 2A). The exper-
iment consisted of a Learning Phase (Fig. 3A), a Test Phase (Fig. 3B),

Figure 2. (A) Stimuli and category structure for the experiment. Stimuli were birds that varied in terms of their neck angle and height (leg length). During the learning phase,
birds were sampled from 4 nonoverlapping category distributions (A, B, C, and D). During the test phase, stimuli were sampled according to a grid that spanned the range of
variation observed in the category-learning task (black dots). (B) An example of the psychological typicality gradients that are found in the task, plotted in relation to the physical
stimulus space. Subjects find objects that are idealized members of their categories typical with respect to their category, and not those that are physically average. (C) An
example of typicality gradients based on physical similarity. Objects that are average with respect to the physical category spaces are favored because they have the highest
similarity to the physical properties of other category members.
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a Typicality-Rating Phase (Fig. 3C), and a Reconstruction Phase
(Fig. 3D). Only the Test Phase was scanned.

Materials
The stimuli were line-drawn birds that differed in terms of their neck
angle (degrees from base of neck) and their height (vertical length of
legs in pixels from base of body; see Fig. 2A). For the category-
learning task, the values along the height and angle dimension were
sampled for each stimulus from 1 of 4 normal distributions centered
at (category: angle, height): (A: −2.5, 170), (B: 32.5, 170), (C: −2.5,
95), (D: 32.5, 95). The standard deviation of the generating distri-
bution for each category was 20° and 33.33 pixels. For each sequence
of 36 stimuli (blocks), there were 9 birds from each category, con-
strained to have a mean equal to that of its generating distribution.
Individual stimuli were constrained to be within one standard devi-
ation of their generating category. In the Test Phase, stimuli were
sampled from a grid with 12 equally spaced values ranging between
−25 and 65° on the angle dimension and between 57.5 and 207.5 on
the height dimension, yielding 144 unique stimuli. Stimuli for the
Typicality-Rating Phase were a subset (1 of 4) of the stimuli used
during the Test Phase.

Behavioral Procedure
Prior to beginning the experiment, subjects were given a thorough
description of each of the Learning and Test Phases, including trial
timings. In addition, they practiced 1 block of Learning Phase and 4
trials of an example Test Phase outside of the scanner so that they
understood the expectations for each task. Subjects were not told that
there would be Typicality-Rating and Reconstruction Phases until
after scanning.

Learning Phase
The Learning Phase (Fig. 3A) was completed during the structural
imaging. On each trial of the Learning Phase, a stimulus was pre-
sented in the center of the projector screen and subjects were
asked to choose the category that it belonged to. To facilitate
learning, during the Learning Phase, the number of categories sub-
jects were asked to choose between on a given trial was limited to
2. This manipulation was introduced by Davis and Love (2010;
“mixed condition”) and is used to speed up the rate of learning
while resulting in a graded structure indistinguishable from sub-
jects’ who have learned by choosing among all 4 categories on a
given trial (Davis and Love 2010; “free condition”). For example,
on a trial in which the stimulus was from category A, subjects
would only have to choose between A and one of B, C, and
D. All pairwise category combinations (e.g., A and C, A and B,
and A and D) were queried for each subject. Each category was
queried 9 times within a block of 36 stimuli (3 times with each
other category). Subjects responded at their own pace using button
boxes held in each of their hands. Subjects were instructed to use
their right and left middle and index fingers to respond. The
mapping of hand/finger to physical category was randomized
across subjects. After responding, feedback, including the correct
category, was presented for 1.5 s followed by a blank screen for
0.25 s. Subjects completed a minimum of 8 learning blocks and
continued training for 16 blocks or until they reached a criterion
of 29 of 36 correct within a single block. Subjects failing to
exceed 29 of 36 correct within 16 blocks were excluded from
further analysis. (The learning procedure allows subjects to focus
on only 2 categories per trial and thus has a chance rate of 1/2
for fully random guessing. However, subjects can achieve up to 2/
3 correct by focusing on only a single dimension. (e.g., learning A
and B are tall and C and D are short). Twenty-nine of 36 rep-
resents the upper 95% cutoff of the binomial distribution with a 2/
3 probability correct over 36 trials. Thus, subjects achieving 29 of
36 or greater correct within a block of 36 are responding better
than would be expected if they had only learned a single dimen-
sion and guessed randomly otherwise.)

Figure 3. Illustration of each of the task phases. (A) Learning phase. On each trial of
the learning phase, subjects are presented with a bird drawn from one of the
category distributions (blobs of letters in Fig. 3A) and are asked to classify it. They
receive feedback about their response and the correct category assignment. (B) Test
Phase. The test phase was functionally scanned. On each trial of the test phase,
subjects are presented with a bird drawn from the grid (black dots in Fig. 3A) and are
asked to classify it. No feedback is delivered in the test phase. Trials are separated by
6.5 s of fixation. (C) Typicality rating phase. On each trial of the typicality-rating phase,
subjects are presented with a bird drawn from the grid (black dots in Fig. 3A) and are
asked to rate it in terms of its typicality for a given category. There was no feedback
in the typicality phase. (D) Reconstruction phase. On each trial of the reconstruction
phase, subjects are presented with a bird drawn from the grid (black dots in Fig. 3A)
and are asked to adjust it (using the arrow keys) so that it matches the average bird
in a target category. There was no feedback in the reconstruction phase.
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Test Phase
The Test Phase (Fig. 2B) was conducted during functional scanning.
On each trial of the Test Phase, a stimulus was presented in the center
of the screen and subjects were asked to categorize it into 1 of the 4
categories. All categories were available to choose from during every
Test Phase trial. The stimulus would remain on the screen for 3.5 s,
during which subjects could respond at any time. After 3.5 s, a fix-
ation cross was presented for 6.5 s. The Test Phase was split into 4
blocks of 36 trials. Stimuli were sampled from the grid in an inter-
leaved sequence (e.g., every fourth stimulus within each category/
quadrant starting with the first, second, third, or fourth) to ensure an
even sampling of the stimulus space within each block (Supplemen-
tary Fig. 1). Trial order within a block was randomized. Each block of
the Test Phase was scanned in a separate functional run.

Typicality-Rating Phase
The Typicality-Rating Phase (Fig. 3C) was completed after the test
phase, outside of the scanner. Prior to beginning the Typicality-Rating
Phase, subjects were given instructions to base their typicality ratings
on a stimulus’ relationship to other members of its category and were
given the examples robin and penguin as instances of typical and aty-
pical birds, respectively. On each trial of the Typicality-Rating Phase,
a stimulus was presented in the center of the screen and subjects
were asked to rate it in terms of how typical it was for its category.
For example, for an A stimulus, subjects would be asked, “How
typical is this bird of category A (1–7)?” The Typicality-Rating Phase
was self-paced. After responding on each trial, subjects were pre-
sented with the words “Thank You” for 1.5 s. The Typicality-Rating
Phase consisted of 36 trials with the same stimuli as were presented
during the final block of the Test Phase. Although only a subset of
stimuli was rated in the Typicality-Rating Phase, the interleaved
sampling scheme used for sampling from the stimulus grid insured
that an even coverage of the category space was achieved for each
subject.

Reconstruction Phase
The Reconstruction Phase (Fig. 3D) was completed immediately after
the Typicality-Rating Phase outside of the scanner. On each trial of the
reconstruction phase, subjects used the arrow keys to adjust the neck
angle and line-length of example birds to match what they remem-
bered to be the average member of each category. For example, on a
category A trial of the reconstruction phase, subjects were presented
with a bird and asked to, “Adjust this bird so that it looks like the
average category A member.” The reconstruction phase consisted of 3
blocks in which each category was queried one time in a random
order. The example birds that subjects were instructed to adjust were
drawn randomly from their category’s quadrant of the test grid. For
example, on an A trial, an example bird would be drawn randomly
from the quadrant containing category A members. All reconstruction
trials were self-paced. After responding on each trial, subjects were
presented with the words “Thank You” for 1.5 s.

fMRI Image Acquisition
Data were collected at the Imaging Research Center at the University
of Texas at Austin on a 3T GE Signa MRI. Functional images were ac-
quired using a single-shot T2*-weighted EPI pulse sequence using an
oblique axial slice prescription with the following parameters: slice
thickness = 3 mm, slices = 32; TR = 2.5 s; TE = 30.5 ms; 64 × 64 matrix;
FOV = 220 mm. The first 2 volumes were discarded from each func-
tional time series to allow for T1 stabilization. To assist in registration,
a high-resolution fast spin echo T2 weighted anatomical image
(TR = 3.5 s; TE = 7.9 ms; 256 × 256 matrix; FOV = 280 mm) was col-
lected with the same slice prescription as the functional images. In
addition, 2 high-resolution SPGR T1 structural images were acquired
in the sagittal plane (slice thickness 1.3 mm; slices = 256; TR = 6 ms;
TE = 1.2 ms; 256 × 192 matrix; FOV = 280 mm). Owing to a shim
failure that caused image distortions (shearing) in the first functional
run/Test Phase for all but 1 subject, the first functional series was dis-
carded in all subjects, leaving 3 functional runs for imaging analysis.

Statistical Methods

Behavioral Analysis and Construction of Internal
Structure Measures
For analysis of behavioral responses, response time, and typi-
cality ratings, a distance-to-the-bound variable was constructed
that gave each stimulus’ overall distance from the boundaries
that separate the categories in the stimulus space.
Distance-to-the-bound is a useful measure of idealization: items
that are distant from the bound are more idealized than items
close to the bound (Davis and Love 2010). Because preliminary
testing revealed that distance-to-the-bound along both dimen-
sions (angle and height) significantly predicted each of the be-
havioral measures and the dimensions did not interact, for
presentation purposes, both dimensions were combined into
an aggregate distance-to-the-bound measure based on a stimu-
lus’ additive distance-to-the-bound along each dimension and
collapsed into 5 evenly spaced distances. This aggregation did
not affect the nature or significance of any statistical results (all
distance-to-the-bound tests where significant for both stimulus
dimensions). For statistical tests, distance-to-the-bound was re-
gressed on each of the behavioral variables using hierarchical
linear models that included random intercepts and
distance-to-the-bound slopes for each subject. In the figures,
the effect of distance-to-the-bound is depicted with respect to
the category B (high angle; high height). Error bars in all
figures depict between subject standard errors of the mean for
each level of distance-to-the-bound.

Construction of Internal Structure Measures
In order to test how neural typicality related to psychological
and physical typicality, we created internal structure measures
that reflected these disparate predictions. For the psychological
typicality measure, a value for each of the Test Phase stimuli
was generated by interpolating, on an individual subjects basis,
a predicted typicality rating from the subjects’ observed typical-
ity ratings (Fig. 2B for a group-level within-category interp-
olation). Interpolation was accomplished by regressing the
observed typicality ratings on each stimulus’ physical coordi-
nates using a generalized additive model (GAM; Hastie and
Tibshirani 1990; Wood 2006). GAMs are a type of nonpara-
metric regression that model linear or nonlinear relationships
between 2 or more variables using a set of smoothing functions
and are especially useful for interpolation when, as in the
present case, we want to capture subject-level idiosyncrasies in
the perception of typicality across the stimulus space while
making few assumptions about their form (linear or nonlinear).
Using a smoothing function for interpolation also has the
benefit of reducing trial-by-trial noise in the psychological typi-
cality measure that would arise from using raw typicality
ratings. Although these interpolated psychological typicality
measures were based on subsets of the full test phase grid (see
Typicality-Rating Phase procedure), statistical tests using hier-
archical linear models revealed that increases in interpolated
typicality predicted decreases in response time [t(12) = 5.61,
P < 0.001] and increases in probability of choosing the most
likely category (z = 5.08, P < 0.001), 2 other measures of
internal structure (Rosch et al. 1976; Davis and Love 2010; see
Results for further tests of these measures). A test of the effect
of distance-to-the-bound on interpolated typicality ratings re-
vealed that distance-to-the-bound along both dimensions

Cerebral Cortex July 2014, V 24 N 7 1725

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/24/7/1720/291445 by guest on 20 M

arch 2024

http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bht014/-/DC1
http://cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bht014/-/DC1


contributed significantly to the interpolated ratings [height:
t(12) = 3.38, P < 0.01; angle: t(12) = 2.45, P < 0.05].

For the physical typicality measure (Fig. 2C), which predicts
that objects will be more typical to the extent that they are
physically similar to other members of their category, we used
an exemplar-based measure of each item’s physical typicality
to members of its category presented during the training
phase (for fitting details and formalism, see Supplementary
Material Equations). Because the form of the psychological ty-
picality measure was allowed to vary between subjects, we
also allowed the form of the physical typicality gradient to
vary between subjects by fitting an exemplar model to each
subjects’ individual test phase performance. Three parameters
were varied between subjects: an attention parameter that
controlled the impact of the height dimension on between
item similarities (attention to angle is 1-height), a specificity
parameter that controls the width or variance of the similarity
gradient between stimuli, and a response scaling parameter
which scales the effect of similarity on choice, but does not
affect the similarity/typicality itself (Ashby and Maddox 1993).
None of these parameters are able to change the basic predic-
tion that physically average items are the most typical. Alter-
nate models that were based only on the objective stimulus
distributions (i.e., multivariate Gaussians, kernel density esti-
mators, and physical prototypes) were also tested but yielded
equivalent (nonsignificant) results and thus are not included
for the sake of brevity.

fMRI Analysis and Image Preprocessing
FMRIB’s Software Library (FSL) was used for image proces-
sing and standard univariate analysis. For preprocessing,
functional time series were skull stripped using BET, cor-
rected for motion using MCFLIRT, and high-pass filtered
(cutoff = 100 s).

Multivariate fMRI Analysis
A β-series decomposition (Rissman et al. 2004) employing an
LS-S procedure (Mumford et al. 2012) was conducted on the
preprocessed, unsmoothed functional time series for each of
the blocks during the Test Phase to obtain trial-by-trial esti-
mates of hemodynamic response. LS-S iteratively models a β
estimate for each stimulus in the task by computing, one at a
time, a separate least-squares model for each stimulus, while
simultaneously controlling for the effect of the other trial
onsets using a single stimulus regressor. Simulations on real
and artificial data reveal that this method outperforms many
commonly employed β-series extraction methods (e.g., ridge
regression) and obtains accurate estimates of the hemody-
namic response at even shorter ITIs than used in the present
experiment (Mumford et al. 2012). Fluctuations in the dur-
ation of the hemodynamic response due to trial-by-trial differ-
ences in time-on-task were controlled for in the LS-S model
by including a regressor in which the duration of the hemody-
namic response varied according to subjects’ response time.
This response time regressor was orthogonalized with respect
to the hemodynamic responses predicted by the fixed dur-
ation trial onsets alone. Unconvolved motion parameters were
included as nuisance variables. The β-series were registered
to the Montreal Neurological Institute (MNI)-152 template
using the registration parameters from the univariate FEAT
analysis (described below).

Neural Typicality Analysis
The computed β-series were used as inputs into the neural ty-
picality measure defined in the Introduction. The spatial local-
ization of the β-series used to compute the neural typicality
measure was selected using a search light algorithm (Krieges-
korte et al. 2006) with a 3-voxel radius. The neural typicality
values for each stimulus, computed over the voxels within
each searchlight, were then correlated with the different pre-
dictions for internal structure (psychological or physical typi-
cality measures described above) using a Pearson correlation.
The obtained subject-level correlation maps were transformed
using Fisher’s Z transformation and combined for second-level
between-subjects analysis. Subject-level maps were submitted
to a group permutation test using FSL’s “randomize” function
(10 000 repetitions) with spatial 5-mm FWHM variance
smoothing, and corrected for multiple comparisons using a
cluster forming threshold of t > 2.18 (P < 0.05) and corrected
extent threshold of P < 0.05. For consistency with the behav-
ioral measures, we plotted the observed neural typicality in
significant clusters (taken from 6-mm spheres around Subjects’
peaks of activation) as a function of distance-to-the-bound.
Although these plots and associated statistics (not presented)
are biased due to having been selected on the basis of whole-
brain statistics (Kriegeskorte et al. 2009; Vul et al. 2009), they
nonetheless help to illustrate consistency across behavioral
and neural measures, the magnitude of the effect, and the lin-
earity assumption of the Pearson correlation is valid.

Partial Activation Analysis
We also conducted additional analyses partialling out the
effect of activation and physical or psychological typicality
from each searchlight prior to correlating the respective
internal structure measure with neural typicality. This mean
signal correction has been argued to neutralize differences in
pattern similarity between stimuli that scale with activation
level or variance, but are not entirely corrected for by corre-
lation’s normalizing for mean and variance (Xue et al. 2012).
Specifically, for the “partial activation analysis,” we partialled
out the effect of the mean activation across each searchlight
from the neural typicality gradient prior to correlating it with
the psychological or physical typicality measures. Likewise,
for the “partial physical analysis,” we partialled out the effect
of physical typicality from neural typicality prior to correlating
it with psychological typicality (and vice versa).

Similarity to Opposing Category Analysis
We present a targeted (within the ROIs identified in whole-
brain neural typicality analysis) between-category analysis
that is a direct extension of our neural typicality measure, but
is based on a stimulus’ similarity to all (3) other categories
that it is not a member of. Aggregating the similarity to oppos-
ing category measure over unambiguous category members
(Fig. 8A) and comparing it to within-category similarity (i.e.,
Neural Typicality), we also test whether unambiguous items
of each category are more similar to members of their own
category than members of opposing categories.

Multidimensional Scaling Analysis
Multidimensional scaling (MDS) is a measure of what latent
dimensions account for variance in a dissimilarity matrix. We
test whether regions identified in a univariate task versus
baseline comparison (The MDS analysis is restricted to
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regions identified in independent univariate analysis instead
of our ROIs identified in the Neural Typicality Analysis
because within-category similarity can impact MDS results.)
(see below; Supplementary Material) code the physical stimu-
lus dimensions that separate the categories via MDS of the
pairwise correlation distance between stimuli (see Krieges-
korte, Mur, Ruff et al. 2008; Kriegeskorte, Mur, Bandettini
et al. 2008). For the MDS analysis, we restricted the analysis
to stimuli within the test grid that were unambiguous
members of their category (stimuli that are distant from the
category boundaries) so as to attempt to remove the majority
of variance associated with within-category differences
between stimuli (e.g., neural typicality) from the MDS results.

Classification Analysis
An epsilon-insensitive linear ν-support vector machine (SVM)
was trained to predict subjects’ behavioral responses during
the test phase using the β-series representations of stimuli
within the task. A nested leave-one-run-out cross-validation
was employed in which we iteratively trained SVMs on acti-
vation patterns from part of the data (all but 1 run) and then
tested the trained SVM’s ability to predict subjects’ responses
in the left-out run. Within each training set, an additional
(nested) leave-one-run-out cross-validation was used to select
the value for the SVM’s hyperparameter (ν) that minimized
transfer error. Ten equally spaced values of ν on the range
(0.1, 1) were tested within each nested cross-validation. The
SVM with the best fitting ν parameter was then retrained on
the full training set and used to predict subjects’ categorization
responses in the left out test set. Because SVMs can be biased
if the number of training examples differs across classes, all
categories were constrained to have equal numbers of
responses within a scanning run. The full nested cross-
validation procedure was used to calculate mean cross-
validated accuracy for each voxel using a searchlight (radius =
3 voxels). Chance performance (0.25) was subtracted from
each voxel within the subject-level accuracy maps. For the
sake of computational tractability, the SVM analysis was done
in native space, and the resulting subject-level accuracy maps
were registered to the MNI template using the registration par-
ameters from the univariate FEAT analysis. The subject-level
normalized accuracy maps were submitted to second-level
group analysis using FSL’s randomize with the same threshold-
ing as for the neural typicality analysis. The resulting group-
level maps give clusters in which the mean cross-validated
accuracy is significantly greater than chance between subjects.

Univariate fMRI Analysis
Voxelwise univariate analysis was conducted using a standard
3-level analysis in FEAT. In the first level, functional data were
prewhitened using FILM, high-pass filtered (cutoff = 100 s),
and spatially smoothed with a 5 mm FWHM Gaussian kernel.
Statistical analyses were performed under the assumptions of
the general linear model (GLM). Regressors included the trial
onsets, convolved with a double gamma hemodynamic
response, and its temporal derivatives. Unconvolved motion
parameters and their temporal derivatives were included as
nuisance predictors. Response time was controlled for in the
same manner as described for the multivariate analysis.

Three separate univariate analyses were conducted to
assess which regions were 1) significantly correlated with
psychological typicality (using the psychological internal

structure measure), 2) significantly correlated with physical ty-
picality (using subject-specific physical typicality measure),
and 3) significantly activated/deactivated relative to baseline
(fixation; see Supplementary Material Results). First-level stat-
istical maps were registered to the MNI-152 template using 7
DOF to align the functional image to the structural image,
and 12 DOF to align the structural image to the MNI-152.
Second-level fixed effects analysis combined Test Phase runs
within a single subject. Third-level random effects modeling,
using Feat’s FLAME 1, combined second-level results across
subjects. Results were thresholded using a cluster-forming
threshold of Z > 1.96 and corrected extent threshold using
Gaussian random field theory (P < 0.05).

Results

Behavioral Results

Learning Phase
All subjects reached the learning criterion of 81% correct
within the first 8 blocks of learning. The mean classification
accuracy increased across learning blocks starting at 0.78
correct in block 1–0.93 correct in block 8, t(12) = 5.23,
P < 0.001.

Test Phase
The proportion of trials in which subjects chose the most
likely category (assuming perfect knowledge of boundaries)
was constant across the 4 test runs (0.78, 0.77, 0.78, and
0.79). Whether or not subjects chose the most likely category,
however, differed depending on the stimulus’ distance to
the boundaries that divide the categories in the stimulus
space (e.g., the central axes that divide A from C and A from
B; Fig. 2A). A hierarchical linear model revealed that subjects’
probability of choosing the most likely category increased
0.10 for each unit increase in distance-to-the-bound (i.e., as
stimuli became more idealized), t(12) = 9.44, P < 0.001
(Fig. 4A). Similarly, response times decreased by 163 ms for
each unit increase in distance-to-the-bound, t(12) = 7.94,
P < 0.001 (Fig. 4B).

In an additional analysis, we examined subjects’ confusion
matrices (which categories subjects chose when they did not
choose the most likely category) and found that confusions
were more likely to occur between categories separated along
a single dimension (e.g., A and B or A and C) then for cat-
egories separated along both dimensions (e.g., A and D; see
Fig. 2A). As a proportion of total confusions, 44% of con-
fusions were between categories separated along the height
dimension, 50% of confusions were between categories separ-
ated along the angle dimension, and 6% of confusions were
between categories separated along both dimensions. These
results are consistent with the distance-to-the-bound results
(categories separated by 2 dimensions are more distant) and
suggest that both dimensions contribute independently to
subjects’ choice behavior.

Typicality Results
A hierarchical linear model revealed that subjects’ typicality
ratings increased by 0.35 typicality units (1–7) for each unit
increase in distance-to-the-bound, t(12) = 4.61, P < 0.001
(Fig. 4C). These results suggest that, as predicted, the stimuli
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that are perceived as most typical are idealized or caricatures
and not the stimuli that were physically average.

Reconstruction Results
For analysis of the reconstruction data, subjects’ reconstruc-
tions were centered around the true category averages such
that a value of 0 would indicate an exact reconstruction of the
category average and a positive value would indicate an ideal-
ized reconstruction. Every subject’s reconstructed category
averages were positive, or idealized, along both dimensions.
For the angle dimension, subject’s reconstructed stimuli were,
on average, 0.64 standard deviations greater than the true cat-
egory averages, t(12) = 13.76, P < 0.001. For the height dimen-
sion, subject’s reconstructed stimuli were, on average, 0.75
standard deviations greater than the true category averages,
t(12) = 7.48, P < 0.001. As with the other behavioral measures,
the reconstruction results suggest that the physical averages
are not average with respect to subjects’ psychological
representations.

Imaging Results

Neural Typicality is Linked to Psychological Typicality
Our primary focus was on how the internal structure of the
categories would be reflected in our neural typicality
measure. Our neural typicality measure is based on simi-
larities between multivariate patterns of activation elicited for
stimuli in the task. Stimuli that elicit activation patterns that
are like other members of their category are more neurally
typical than those that elicit dissimilar patterns of activation.
One hypothesis was that the internal structure of the neural
category representations would be linked to their psychologi-
cal structure such that the stimuli that are most neurally
typical would be those that subjects find most typical. Accord-
ing to this hypothesis, the stimuli that are idealized or carica-
tured relative to the physical category space should be those
that elicit patterns of activation that are most similar to other
category members.

A searchlight algorithm was employed to examine how
pattern similarity related to subjects’ typicality ratings in
different regions of the brain. In each searchlight, we com-
puted the multivariate neural typicality measure for each
stimulus and correlated the resulting neural typicality gradient
with subjects’ typicality ratings (Fig. 1B). Two clusters exhib-
ited the predicted correlation between neural typicality and
psychological typicality: as perceived stimulus typicality in-
creased, the similarity between patterns of activation for the
stimulus and other members of its category increased
(Fig. 5A; Table 1). One cluster spanned the early visual cortex
from the lingual gyrus and occipital pole to the superior
lateral occipital cortex (cluster-corrected P = 0.006; Fig. 6A).
These early visual regions have been hypothesized to code
prototype-based representations of simple perceptual cat-
egories in previous fMRI research (Reber et al. 1998, 2003;
Aizenstein et al. 2000; Zeithamova et al. 2008; for review see
Ashby and Maddox 2005), and are known to be sensitive to
primitive object features like the neck angle and leg length
dimensions that constitute our stimulus set (e.g., Haynes and
Rees 2005; Kamitani and Tong 2005). A second cluster
spanned the right posterior MTL regions in the parahippo-
campal cortex and neighboring hippocampus and posterior
into temporal fusiform and lingual gyrus (cluster-corrected

Figure 4. Behavioral results for (A) probability of choosing the most likely category,
(B) response times, and (C) typicality ratings as a function of distance-to-the-bound
or increasing idealness (from left to right). For presentation purposes,
distance-to-the-bound is depicted with respect to increasing idealness in category B
(ideal is tall and high neck angle). Error bars represent ± standard error of the mean.
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P = 0.047 (In an earlier version of this analysis using fewer
[5000] iterations in our permutation tests, this MTL cluster’s P
value was slightly higher [cluster-corrected P = 0.051].);
Fig. 6B). These MTL regions have recently been associated
with model-based measures for retrieval of category represen-
tations from memory (Davis et al. 2012a, 2012b). The tem-
poral fusiform is often associated with representing higher
order features and feature combinations that are constituents
of many natural object categories (Martin et al. 1996; Haxby
et al. 2001; Palmeri and Gauthier 2004). These results suggest
that, in the present task, the internal structure of neural cat-
egory representations in temporal and occipital regions are
linked to subjects’ psychological category representations
such that objects that are idealized or physical caricatures of
their category elicit patterns of activation that are most (math-
ematically) similar to other members of their category.

Relationship Between Neural Typicality and Psychological
Typicality is Not Related to Univariate Activation Differences
Between Stimuli
Although the neural typicality measure normalizes with
respect to overall activation within a searchlight, and thus
mean activation level does not figure directly into any of the
similarity calculations, previous research has suggested that it
is also important to assess whether pattern similarities are
statistically independent of results predicted by mean
activation-level (Xue et al. 2010, 2012). Partialling out mean
activation can aid in interpreting how univariate activation
and pattern similarity results differ and potentially neutralize
any residual impact of univariate activation that is not ac-
counted for by using a correlation distance metric. To this
end, we also conducted a set of analyses in which we par-
tialled activation out of the neural typicality measure prior to

Figure 5. Neuroimaging results for (A) regions in which neural typicality measure
correlates with psychological typicality(red/yellow); (B) regions in which the SVM’s
cross-validated classification accuracy was significantly greater than chance (pink),
(C) regions in which univariate activation correlates significantly with psychological
typicality (green).

Table 1
Observed clusters for each of the main analyses

Analysis Regions Cluster
size

x y z Peak
(t)

Neural typicality measure
(psychological typicality)

Early visual cortex 2234 24 −98 −16 4.97
Right temporal fusiform,
medial temporal lobes, lingual
gyrus

993 24 −36 −16 4.18

SVM predicting subjects’
responses

Right motor, premotor, insula,
frontal, and hippocampus

7976 44 −20 54 4.88

Early visual cortex, occipital
fusiform, and lingual gyrus

5660 20 −68 −18 4.22

Left insula, frontal and
hippocampus

3871 −8 48 −20 4.44

Left motor and premotor
cortex

2888 −50 −22 50 4.63

Univariate activation
(psychological typicality)

Striatum 866 18 8 −2 3.26

Coordinates (mm) listed are for cluster peak.

Figure 6. Neural typicality within each whole-brain ROI presented as a function of
distance-to-the-bound or increasing idealness (from left to right). For presentation
purposes, distance-to-the-bound is depicted with respect to increasing idealness in
category B (ideal is tall and high neck angle). Neural typicality scores are
standardized within subjects to neutralize individual differences in scale. Error bars
represent ± standard error of the mean.
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correlating it with the psychological typicality ratings, yielding
statistical maps in which the effect of psychological typicality
on neural typicality is statistically independent of mean acti-
vation. Consistent with the prediction that the neural typical-
ity measure reflected representational differences between
stimuli, both clusters reached statistical significance in the
partial activation analysis: early visual ROI P = 0.013; Tem-
poral ROI P = 0.045 (Supplementary Fig. 2A).

Neural Typicality Gradient Does Not Derive From Physical
Similarity
Another potential influence on the internal structure of neural
category representations is physical typicality. To test the
hypothesis of whether physically typical stimuli would be the
most neutrally typical and elicit activation patterns that are
most similar to other members of their category, we con-
structed a physical typicality measure that favored physically
average stimuli (Fig. 2C). In contrast to our pattern similarity
analysis that used subjects’ typicality ratings and favored ideal
stimuli, the physical typicality measures did not reveal any
correlation with the neural typicality measure that passed cor-
rected thresholds (most significant cluster: P = 0.328). These
results suggest that, in the present task, physical similarity is
not a significant contributor to the internal structure of neural
category representations, at least not at a level that is amen-
able to detection using fMRI.

Partial Correlation Analysis of Neural Typicality
Although our presentation of internal structure and how it is
manifest in neural similarities makes physical and psychologi-
cal typicality appear as if they are separate hypotheses for
how the brain organizes category representations, in many
cases, it might be useful to view internal structure from a mul-
tiple regression standpoint where these factors (and others)
are seen as different influences on how category represen-
tations are organized. This is the approach taken by Barsalou
(1985), who was one of the first to demonstrate an effect of
ideals on internal structure. In this spirit, we conducted
additional partial correlation analyses examining whether the
effect of psychological typicality was significant after partial-
ling out the effect of physical typicality and vice versa.

The results were highly consistent with the analyses exam-
ining the internal structure measures independently. The
psychological internal structure measure correlated signifi-
cantly with neural typicality in clusters in the early visual
(P = 0.007) and temporal cortices (P = 0.017) after partialling
out the effect of physical typicality. Physical typicality re-
mained a nonsignificant predictor of neural typicality after
partialling out the effect of psychological typicality (most sig-
nificant cluster: P = 0.134).

Similarity to Opposing Categories
One important question in relation to category representation
is the extent to which stimuli are represented as distinct from
members of other categories and whether this differs as a
function of an item’s physical or psychological typicality. With
respect to between-category similarity, both physical and
psychological typicality measures predict that idealized items
will be less similar to opposing categories in terms of the
present stimulus space. Assuming that the regions that code
internal structure also represent between-category differences,
dissimilarity to opposing categories as a function of

distance-to-the-bound should be evident in the early visual
and temporal ROIs. Accordingly, the results of a hierarchical
linear model regressing distance-to-the-bound on between-
category similarity revealed that similarity to opposing cat-
egories decreased as distance-to-the-bound increased in the
early visual ROI, t(12) = 3.91, P = 0.002 (Fig. 8A). The effect of
distance-to-the-bound on between-category similarity was
marginal in the temporal ROI, t(12) = 2.00, P = 0.069 (Fig. 7B).
A post hoc analysis that was inspired by the plots of similarity
to opposing categories as a function of distance-to-the-bound
revealed that there was also a significant quadratic trend in
both regions whereby similarity to opposing categories
tended to rise for the most extreme/idealized category
members (early visual ROI: t(12) = 3.82, P = 0.002; temporal
ROI: t(12) = 2.45, P = 0.031). The overall decreasing linear
trend remained robust in both ROIs after taking into account
the quadratic effect (early visual ROI: t(12) = 3.41, P = 0.005;
temporal ROI: t(12) = 2.30, P = 0.04).

Figure 7. Between-category similarity within each whole-brain ROI presented as a
function of distance-to-the-bound or increasing idealness (from left to right). For
presentation purposes, distance-to-the-bound is depicted with respect to increasing
idealness in category B (ideal is tall and high neck angle). Between-category
similarity scores are standardized within subjects to neutralize individual differences in
scale. Error bars represent ± standard error of the mean.
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According to models of categorization (Nosofsky 1986;
Kruschke 1992; Ashby and Maddox 1993; Minda and Smith,
2002; Love et al. 2004), both similarity to opposing categories
and within-category similarity should affect categorization
judgments. Typical objects should not only be more like
members of their own category and less like members of
other categories, but also within-category similarity should be
stronger overall than between-category similarity. To test this
hypothesis, we directly compared mean within-category simi-
larity (i.e., neural typicality) for unambiguous items to mean
between-category similarity for unambiguous items. In both
ROIs, within-category similarity was significantly greater than
between-category similarity [early visual ROI: t(12) = 2.35,
P = 0.037; temporal ROI: t(12) = 2.37, P = 0.036].

Multidimensional Scaling
Another method for characterizing whether a brain region
codes differences between categories, with respect to many
tasks, is to examine whether regions of the brain code the di-
mensions of variation that separate categories. In the present
task, there are 2 independent dimensions of variation for all
stimuli (neck angle and height). Although physical

differences along these dimensions cannot account for neural
typicality/within-category similarities between stimuli (there
is no linear reweighting of the physical stimulus dimensions
that would make ideal items more average than physically
average items), it is still possible that the larger between-
category variation along these dimensions is detectable. As an
exploratory technique, classical MDS is well suited for disco-
vering independent latent dimensions of variation that
explain the (dis)similarities between stimuli in a multidimen-
sional space. To examine the question of whether any of the
ROIs identified in the univariate (task vs. baseline contrasts;
see Supplementary Material) coded the stimulus dimensions
that separate the categories, we grouped the most highly
typical and unambiguous stimuli in each category into groups
based on their distance from opposing categories (Fig. 8A)
and computed representational dissimilarity matrices that
coded the pattern (dis)similarity between each group. An
MDS of the representational dissimilarity matrix extracted
from the occipital pole ROI revealed a 2D solution that corre-
sponded well to the physical stimulus dimensions (Fig. 8B).
Although this 2D solution only accounted for 25% of the var-
iance in the dissimilarity matrix, it nonetheless accurately re-
flected the physical between-category differences for the
different stimulus groupings. Indeed, 75% classification accu-
racy can be achieved by using decision boundaries orthog-
onal to the 2 extracted dimensions (formal linear discriminant
analysis achieved the same level of accuracy). One weakness
of MDS is that, like factor analysis, independent component
analysis, and other exploratory data analysis techniques, the
dimensions that MDS extracts are subject to interpretation and
often may not be interpretable at all (Venables and Ripley
2002). Indeed, no dimensions extracted in other regions pro-
duced easily interpretable results or separated the categories
significantly above chance in linear discriminant analyses.

Classification Analysis
Some regions of the brain may discriminate between cat-
egories on the basis of behavioral factors (e.g., responses and
rules; Freedman et al. 2003; Maddox and Ashby 2004; Pan
and Sakagami 2012) and thus would not exhibit graded
effects (i.e., similarity to opposing categories analysis) or may
not separate the categories on the basis of visual stimulus di-
mensions (MDS). Thus, we also include a whole-brain,
between-category classification analysis that attempts to
predict subjects’ categorization responses using SVMs. Unlike
the previous analyses, SVMs are sensitive to between-category
information that can be coded in a variety of forms. The
SVM’s measure of between-category representation is its
ability to accurately predict (classify) subjects’ categorization
responses from the β-series activation patterns elicited for
stimuli in the task. To this end, the SVMs were trained on a
group of β-series patterns (all but 1 scanning run) and then
used to predict subjects’ responses during the left out scan-
ning run on the basis of this training. The SVMs are given no
information about the underlying stimulus space, and unlike
the MDS analysis, do not make any assumptions about how
the dimensions that separate the categories will be organized.
Thus, the SVMs can be sensitive to regions that code rule-
based or behavioral differences between categories, regions
that encode information about their perceptual differences, or
regions that code some combination of behavioral and per-
ceptual information.

Figure 8. (A) Illustration of the coding used for the multivariate analysis relating
pattern similarity to between-category differences. Each of the codes corresponds to
a group of stimuli presented during the test phase. The codes are structured based
on the distance to the boundary that separates the categories (center of the stimulus
space). The distance from the boundary along each dimension is divided into 3 equal
sized sections (1–3), with 3 being the furthest from opposing categories or most
ideal. Only the most unambiguous stimuli (2 and 3 s on both dimensions) were
included so as to focus on between-category differences. (B) Results from
multidimensional scaling of between-category pattern similarity in the occipital pole.
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Clusters in widespread regions of the visual cortex and oc-
cipital fusiform (P = 0.042) and right motor/premotor cortex,
insula, hippocampus, and lateral frontal cortex (P = 0.028)
were found to discriminate between categories significantly
greater than chance in the SVM analysis (Fig. 5B; Table 1).
Two separate clusters covered the same general motor/pre-
motor, insula, hippocampus, and frontal regions in the left
hemisphere, but were marginally significant (motor/premotor
P = 0.089; insula, hippocampus, and frontal P = 0.065).

Although there is strong overlap in the visual and MTL
regions that discriminate between categories and represent
internal structure, the motor/premotor, insula, and frontal
regions were only identified in the between-category analysis.
These results are consistent with the hypothesis that PFC and
motor/premotor regions are more sensitive to behavioral
aspects of categories (Freedman et al. 2003; Maddox and
Ashby 2004; Pan and Sakagami 2012). However, because be-
havioral responses are strongly associated with the perceptual
characteristics of each category, the SVM results are also con-
sistent with the hypothesis that these regions contain some
perceptual information about the categories.

Univariate Typicality Models Predict Activation in Ventral
Striatum
As discussed above in the partial activation analysis, univari-
ate activation that is significantly related to a particular
measure or contrast is often viewed as an indicator that a
region is involved with processes associated with the measure
(as opposed to representations per se). Thus, we also
examine how our internal structure measures (psychological
and physical typicality gradients) relate to univariate acti-
vation, as many psychological processes are sensitive to typi-
cality or goodness of membership (Murphy 2004).

In the present context, in relation to the goals of the test
phase, psychological typicality or atypicality, which favors
idealized stimuli, may reflect subjects’ level of certainty in an
objects’ category membership. Highly typical stimuli are
almost certain to be members of their category whereas atypi-
cal stimuli are associated with greater uncertainty. Accord-
ingly, while we did not find any regions that positively
correlated with typicality, we did observe a cluster of acti-
vation centered in the putamen and spanning the surrounding
ventral striatum that negatively correlated with typicality (see
Fig. 5C; Table 1). These results are consistent with previous
results suggesting a role for the ventral striatum and dopa-
mine system in processing categorization novelty and uncer-
tainty (Grindband et al. 2006) or entropy (Aron et al. 2004;
Davis et al. 2012b). They also highlight the unique utility of
multivariate pattern analyses for understanding relations
between cognitive and neural representations. We did not
find any regions in which univariate activation tracked phys-
ical typicality (favoring physically average stimuli).

Discussion

The present study sought to decode the internal structure of
category representations using multivariate patterns of acti-
vation measured with fMRI. To this end, we coined a neural
typicality measure that is based on the similarity between the
patterns of activation elicited for a stimulus and other
members of its category. According to this measure, objects
that elicit patterns of activation that are more similar to other

members of their category or are in regions of higher density
with respect to a neural category space are more neurally
typical. By applying the neural typicality measure to imaging
data from an artificial categorization task, we tested whether
the neural representations of categories in an artificial
category-learning task reflected subjects’ psychological per-
ceptions of typicality (which would favor physically “ideal”
category members), or were instead organized on the basis of
physical typicality (which would favor physically “average”
category members). We found, in regions of the temporal and
occipital cortex, that psychological and neural typicality were
closely aligned, such that neural typicality increased as a func-
tion of subjects’ perceptions of typicality. In contrast, a phys-
ical typicality measure that favored physically average
category members was not significantly associated with
neural typicality gradients in any brain region. These results
suggest that patterns of activation in the brain can carry fine-
grained information on the internal structure of subjective cat-
egory representations, a topic that has been at the center of
debate in cognitive research for decades.

The present research adds to the growing consensus that
categorization depends on interactions between a number of
different brain regions (Ashby and Maddox 2005; Poldrack
and Foerde 2008; Seger and Miller 2010). Indeed, as we
found in our series of both between- and within-category
(and univariate) analyses, information about category struc-
ture and membership is widely distributed throughout the
brain. An important point that this observation highlights is
that there may not be any brain region that can be thought of
representing all aspects of categories, and thus it might be
most accurate to think of brain regions in terms of the aspects
of category representations that they code. In this regard, our
neural typicality measure may be a valuable additional tool
for studying category representations using neuroimaging.
Because internal structure depends, at least in part, on infor-
mation about featural variation within a category, neural typi-
cality may be more uniquely sensitive to representations in
brain regions that process a category’s constituent features
than are between-category techniques like classifiers. Indeed,
between-category information may not only code featural
differences between categories, but also a number of other
more behavioral differences. Together, multivariate tech-
niques that measure both between and within-category infor-
mation (in addition to univariate analyses) are able to reveal a
broader picture of how different brain regions contribute to
categorization.

One advantage of our neural typicality measure over other
measures of neural function that have been used to study cat-
egorization is that it brings fMRI analysis more in line with
theoretical mechanisms posited by cognitive models. Like our
measure, cognitive models predict that categorization
depends on processes that compute similarity or matches
between items and category representations (Nosofsky 1986;
Kruschke 1992; Ashby and Maddox 1993; Minda and Smith
2002; Love et al. 2004). Insofar as neural activation patterns
elicited in the task are measures of the underlying neural rep-
resentation, our results provide strong evidence that the brain
may engage the same types of processes as posited by cogni-
tive models. Evidence that these neural activation patterns
differentiate items both within- and between-categories is
consistent with this representational interpretation. Univariate
measures of activation are often less interpretable and may

1732 Neural Basis of Category Structure • Davis and Poldrack

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/24/7/1720/291445 by guest on 20 M

arch 2024



correlate with psychological measures for reasons other than
representational similarity or matching processes. For
example, in the present context, the deactivation of regions of
the striatum with increasing typicality likely indicates an un-
certainty signal, as opposed to category representation, based
on current knowledge of the ventral striatum’s role in categor-
ization (Grindband et al. 2006; Davis et al. 2012b).

One univariate activation-based measure of neural rep-
resentation that has recently been theorized to be sensitive to
internal category structure is repetition suppression. Rep-
etition suppression measures representational similarity as the
degree of univariate neural adaptation between a stimulus
and another presented immediately after. Historically, rep-
etition suppression has been used to measure the perceptual
dimensions coded by a particular region as opposed to
internal category structure per se, but recent work suggests
that repetition suppression can also contain information
about longer term category statistics in a task (Leopold et al.
2006; Panis et al. 2011; Kahn and Aguirre 2012). For example,
the level of repetition suppression on a given trial may
measure not only the similarity between adjacent stimuli, but
also a stimulus’ prototypicality or similarity to other stimuli in
the task. Psychologically, this adaptation may indicate the re-
trieval of a norm that subjects compare to current stimuli
(Leopold et al. 2006; Panis et al. 2011; Kahn and Aguirre
2012), which is akin to how categorization operates in formal
prototype models (e.g., Minda and Smith 2002).

Although repetition suppression has well-established links
to similarity and a direct relationship to the underlying neural
population firing (e.g., Sawamura et al. 2006) it also has
several pitfalls with respect to its interpretation as a measure
of internal category structure. First, like other univariate acti-
vation measures, repetition suppression can potentially be
contaminated by any other psychological variable that is
known to impact univariate activation beyond just the rep-
resentational similarity between 2 adjacent stimuli (e.g., un-
certainty, novelty, and salience). Second, in many cases,
short-term adaptation differences between stimuli are con-
founded with longer term adaptation due to stored stimulus/
category representations because physically average stimuli
more often follow similar stimuli than nonphysically average
stimuli (Leopold et al. 2006; Panis et al. 2011; Kahn and
Aguirre 2012). Thus, for example, aggregate measures of acti-
vation for physically average items can appear to be associ-
ated with the highest level of adaptation, even in cases for
which activation contains only information about adjacent
stimuli.

Because our neural typicality measure is not based on
mean activation-level differences between stimuli, it may be
more directly interpretable and less susceptible to adjacency
effects in studies of longer term internal category structure.
Indeed, in a set of follow-up analyses we found that our
results remained significant (A hierarchical linear model was
used to test the effect of psychological typicality on the neural
typicality measure within each ROI while simultaneously con-
trolling for the Euclidean distances between adjacent stimuli.
The relationship between psychological and neural typicality
remained significant in both ROIs [temporal ROI: t(12) = 11.25,
P < 0.001; early visual ROI: t(12) = 13.00, P < 0.001].) in both of
our ROIs after controlling for the pairwise Euclidean distances
between stimuli (see Kahn and Aguirre 2012), suggesting that
our neural typicality results are not driven by suppression

between adjacent stimuli. Still, in future research, it will be
worthwhile to employ designs that use both of these potential
measures of internal category structure to better understand
their respective advantages and disadvantages. For example,
because our intertrial intervals are longer than those em-
ployed in repetition suppression tasks (Kahn and Aguirre
2012), it remains to be seen whether our neural typicality
measure is unaffected by suppression between adjacent
stimuli in all contexts.

Although our neural typicality measure offers a principled
and straightforward method for testing an item’s relationship
to neural category representations, it is still important to con-
tinue to test its assumptions in a number of paradigms. By
widely testing the measure with both real world and artificial
categories, it will help to ensure that our measure is valid in
broader contexts and to strengthen its link to psychological
category representations. One potential difficulty with
strengthening the measure’s links to psychological category
representations is that what exactly psychological measures of
internal structure are measuring is an ongoing field of re-
search in and of itself (e.g., Davis and Love 2010; Kim and
Murphy 2011; Voorspoels et al. 2011), and thus measures like
typicality ratings can often lead to multiple interpretations
within a single task setting. For example, typicality ratings
often indicate goodness-of-example, which can diverge from
what subjects actually believe is average for a category (Kim
and Murphy 2011). Likewise, because typicality ratings are
often at least partially correlated with other measures of
internal structure such as reaction time (Reaction time alone is
insufficient for explaining our results in the present context
because it is controlled for in all statistical models.) and prob-
ability correct (Posner and Keele 1968; Rosch et al. 1976),
they may be interpreted as measures of fluency or certainty.
Although our reconstruction results are less ambiguous than
typicality ratings (Davis and Love 2010) and suggest that sub-
jects’ psychological representations actually are idealized, it is
still possible that our fMRI results may indicate that the brain
organizes representations around fluently processed category
members as opposed to reflecting subjects’ actual psychologi-
cal representations per se. Thus it will be important for future
research connecting psychological and neural structure to in-
tegrate results over a number of paradigms involving both
real world and artificial category structures. By developing a
principled measure of neural typicality and showing that
neural structure is connected to psychological measures in a
manner predicted by computational theories, our results
make an important first step in this endeavor.

Mechanisms That Shape Internal Structure
One important question, with respect to our results, concerns
the mechanisms by which psychological and neural category
representations come to differ from physical stimulus spaces.
Cognitive categorization models have a number of options
available for emphasizing particular regions or dimensions of
a stimulus space. Formally, this amounts to increasing or de-
creasing the density estimates of particular regions of a
stimulus space or the impact of specific stimulus dimensions.
One well-studied mechanism that can warp the topography of
a physical stimulus space is dimensional selective attention
(Nosofsky 1986). Dimensional selective attention allows em-
phasis on a particular stimulus dimension such that changes
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along this dimension are magnified in the psychological or
neural space. In the extreme, dimensional selective attention
acts as a rule and only values along a single dimension
become relevant for a decision (Nosofsky 1991). Recent
neuroscience research has found that learning a category can
lead to changes in repetition suppression in the occipital and
temporal cortices, such that the amount of suppression
between 2 stimuli increases along attended dimensions (Fol-
stein et al. 2012). Similarly, in the broader literature, machine
learning methods have been used to decode which dimen-
sions of stimuli are attended to based on patterns of activation
in early visual and higher level regions (e.g., Haynes and Rees
2005; Kamitani and Tong 2005; MacEvoy and Epstein 2009;
Serences et al. 2009). Attentional mechanisms in the PFC that
instantiate rule-based strategies (Ashby et al. 1998; Smith
et al. 1998; Ashby and Maddox 2005) may contribute to selec-
tive attention effects by influencing neural representations in
a top-down manner.

In the present context, dimensional selective attention is in-
sufficient for explaining the idealization effect because dimen-
sional selective attention affects an entire dimension
uniformally. There is no linear reweighting of the stimulus di-
mensions that can make idealized items more similar to other
items than items that are physically average. Indeed, our
model that favored physical averages included dimensional
selective attention, and was not able to account for neural or
behavioral results. In order for models to predict idealization
effects, or any effect in which a subsection of space is empha-
sized (e.g., rule-plus-exception tasks; Sakamoto and Love
2004, 2006; Davis et al. 2012a, 2012b) additional mechanisms
are required. In the present context, within an attentional fra-
mework, different regions of the stimulus space (i.e., different
exemplars) may be able to be emphasized by exemplar-
specific attention mechanisms (Sakamoto et al. 2004; Rodri-
ques and Murre 2007) that either upweight or downweight
the impact of similarity between individual stimuli. Although
we know of no studies that have directly explored the neural
basis of such exemplar-specific attention mechanisms in cat-
egorization, theories about attentional spotlight effects in the
processing of visual scenes are interestingly related (e.g.,
Kastner and Ungerleider 2000; Corchs and Deco 2002). Atten-
tion has been found to create a spotlight around salient
regions of visual space such that the processing of stimuli
close to this location in space is enhanced (not just differences
along a specific dimension of visual space; Kastner et al.
1998; Brefczynski and DeYoe 1999). It is conceptually
straightforward to predict that the same or similar spotlight
mechanisms may affect the topography of stored neural stimu-
lus representations, such that regions of a category space that
contain highly idealized category members are enhanced and
contribute more to categorization and typicality judgments
than exemplars in ambiguous regions of category space.

A second candidate mechanism for idealization effects is
error-driven learning mechanisms that adjust category rep-
resentations to reduce prediction error and confusion
between categories (Davis and Love 2010). In these models,
category members are simultaneously pulled toward rep-
resentations/members of their own categories and repelled by
members of opposing categories. In brief tasks, the net force
on category representations tends to be repelling, and cat-
egory averages are remembered as more idealized than they
actually are (Davis and Love 2010). Unlike attention-based

accounts, error-driven learning assumes that category learning
can actually change the location of points (or category rep-
resentations) within the space as opposed to simply empha-
sizing or de-emphasizing different regions or dimensions. For
example, error-driven learning accounts in the present task
would predict that the psychological average of tall and short
birds would shift apart over the course of learning such that
the actual representations are idealized. In terms of neural
mechanisms, the error-driven learning account seems less
likely to be a viable explanation for the neural effects as
actual neuronal changes in regions of early visual cortex
happen on a much longer scale than our task (Ghose et al.
2002).

The goal of the present study was not designed to disentan-
gle the psychophysical or neurophysical mechanisms that
transform physical stimulus spaces into psychological or
neural spaces. However, our finding of relations between
neural and psychological category spaces that arise from such
transformations paves the way for future research to explore
commonalities and differences in the processing mechanisms
that lie upstream. In future research aimed at dissociating can-
didate mechanisms, it will be critical to scan subjects during
both learning and test and employ a variety of category struc-
tures (e.g., Levering and Kurtz 2006; Davis and Love 2010).
Scanning subjects over a longer time period or during mul-
tiple training sessions may also help to clarify the underlying
neural and psychological mechanisms that shape category
representations. It may be the case that, over time, subjects
come to better represent the actual physical category structure
and thus the amount by which neural and psychological rep-
resentations are idealized could change. For example, over
long time periods, error-driven learning models should con-
verge toward the true category averages whereas attentional
effects may never dissipate as long as the same dimensions
and stimuli remain salient.

The Role of Perceptual Regions Representing Internal
Structure
In addition to testing how cognitive/theoretical mechanisms
relate to neural typicality, it will also be useful for future re-
search to begin to delineate the precise role that different per-
ceptual regions play in representing internal structure. Here,
we hypothesize that the regions that represent internal struc-
ture in any given task will be those that code the differences
between stimuli within the categories tested. We predicted
early visual cortex would be sensitive to internal structure in
the present case because differences between stimuli within a
category can be represented with the primitive features early
visual cortex is known to code. In other tasks where primitive
visual features do not reliably distinguish between categories
(or categories based in other modalities), we would expect
that early visual cortex would not be recruited to code
internal structure.

This view, that it is the features of the categories themselves
that determine which perceptual regions will be recruited
differs, in some respects, with category-learning theories that
emphasize the structure of categories (e.g., verbalizable vs.
nonverbalizable rules) and learning demands (e.g., incidental
or unsupervised vs. supervised learning) in determining
which perceptual regions will be recruited to learn new cat-
egories (for review see Ashby and Maddox 2005). One
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important finding from this tradition, with respect to the
current results, is that early visual cortex activation tends to
be more strongly associated with incidental learning tasks
(Reber et al. 2003; but see Gureckis et al. 2011) or tasks re-
quiring subjects to learn to discriminate between members
and nonmembers of a single category (e.g., A/non-A; Reber
et al. 1998a, 1998b; Aizenstein et al. 2000) as opposed to
learning to distinguish between members of 2 different cat-
egories (Seger et al. 2000; Vogels et al. 2002; Zeithamova
et al. 2008; A/B tasks). Our task involves learning to dis-
tinguish multiple categories, akin to A/B tasks, and so our
finding that early visual cortex is involved with representing
category structure may be at odds with theories emphasizing
the role of task demands (as opposed to featural qualities) in
determining which perceptual regions will be recruited to
represent categories. This discrepancy between our current
study and previous results and theory may be due to the fact
that all previous category-learning studies exploring the role
of early visual cortex in category learning have used simple
univariate measures of mean activation/deactivation that,
unlike our multivariate methods, do not explicitly test
whether the relationships between stimuli in the task are
coded within any particular region.

Still, it will be important for future research to explicitly
test whether and how regions like the early visual cortex rep-
resent internal structure in a variety of designs and to expli-
citly compare A/B and A/non-A tasks. We predict that, in
contexts where the differences between stimuli within cat-
egories can be represented with primitive visual features, the
early visual cortex will be involved with representing internal
structure regardless of the task demands. However, which
items will be the most psychologically typical will change de-
pending upon the design and task demands, and thus, we
expect that which items will be more neurally typical will also
change. For example, in unsupervised learning tasks, or many
A/non-A tasks, there would be no behavioral benefit to em-
phasizing extreme or caricatured category members, and thus
psychological and neural typicality should favor the true phys-
ical category averages (see also, Levering and Kurtz 2006;
Davis and Love 2010).

The Plurality of Categorization Research
For much of the history of categorization research (and cogni-
tion in general), there has been a trade-off between realism,
or ecological studies of real-world categories, and the use of
highly controlled novel stimuli. On the one hand, real-world
categories are ultimately what categorization researchers wish
to generalize to; artificial categories are often much less mean-
ingful and complex, and results from artificial categorization
experiments may not always scale up (Murphy 2004). On the
other hand, it is not possible to control subjects’ prior experi-
ence with real world categories, and the physical and psycho-
logical features of such categories that subjects use to guide
categorization choices are often much less straight-forward
than for artificial stimuli. In the present study, we opted for
highly controlled artificial stimuli because it was crucial to be
able to generate straight-forward predictions for how physical
and psychological typicality contributed to neural typicality
gradients. It can be difficult to thoroughly disentangle contri-
butions of physical similarity in natural categories because
taxonomic categories, such as birds, are often formed

precisely because their members share physical and percep-
tual characteristics (Rosch 1973; Rosch and Mervis 1975). Still,
owing to the reciprocal nature of categorization research, it
will be important for future research to test the neural typical-
ity measure in more real-world settings. One ambitious idea
for future research is to test whether cross-cultural differences
in neural typicality gradients reflect well-known psychological
differences in the organization of common taxonomic cat-
egories. For example, Native American populations tend to
organize categories on the basis of ecological principles (e.g.,
the food chain), whereas western subjects are more likely to
organize categories on the basis of perceptual and taxonomic
relations (Medin and Atran 2004).

Conclusion

In conclusion, investigating the organization of category rep-
resentations in the brain offers an important window into the
neural basis of cognition. Categories underlie much of every-
day cognition and allow us to generalize knowledge or beha-
viors learned from one object to other related objects. The
internal structure or organization of category representations
is a key topic in categorization research and has a dramatic
impact on categorical inference and behavior. Here, we
coined a multivariate neural typicality measure that is able to
reveal the internal structure category representations in the
brain. Using this measure, we found that the organization of
category representations in regions of the temporal and occi-
pital cortex are linked to subjects’ psychological category
structure, such that, to the extent that stimuli are more typical
psychologically, they tend to also be more similar to other
members of their category in a neural pattern similarity space.
The relationship between pattern similarity and category rep-
resentation, while still only beginning to be explained, has
the potential to uncover general principles that may hold
across the brain’s representational systems and cognitive
domains, suggesting that the brain may be a key source of
data for linking cognitive and neurobiological theories of
behavior.
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