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Oscillations are pervasive in encephalographic signals and
supposedly reflect cognitive processes and sensory representa-
tions. While the relation between oscillation amplitude (power) and
sensory--cognitive variables has been extensively studied, recent
work reveals that the dynamic oscillation signature (phase pattern)
can carry information about such processes to a greater degree
than amplitude. To elucidate the neural correlates of oscillatory
phase patterns, we compared the stimulus selectivity of neural
firing rates and auditory-driven electroencephalogram (EEG)
oscillations. We employed the same naturalistic sound stimuli in
2 experiments, one recording scalp EEGs in humans and one
recording intracortical local field potentials (LFPs) and single
neurons in macaque auditory cortex. Using stimulus decoding
techniques, we show that stimulus selective firing patterns imprint
on the phase rather than the amplitude of slow (theta band)
oscillations in LFPs and EEG. In particular, we find that stimuli
which can be discriminated by firing rates can also be
discriminated by phase patterns but not by oscillation amplitude
and that stimulus-specific phase patterns also persist in the
absence of increases of oscillation power. These findings support
a neural basis for stimulus selective and entrained EEG phase
patterns and reveal a level of interrelation between encephalo-
graphic signals and neural firing beyond simple amplitude
covariations in both signals.

Keywords: auditory cortex, entrainment, natural sounds, oscillations,
phase coding, stimulus discrimination, theta band

Introduction

Oscillatory signals are pervasive in scalp potentials recorded

using the electro- or magnetoencephalograms (EEG, MEG)

supposedly reflect the implementation of cognitive processes,

such as sensory representations, the routing of sensory

information, or decision making (Varela et al. 2001; Ward

2003; Donner and Siegel 2011; VanRullen et al. 2011). Many

studies have demonstrated how the amplitude (power) of

oscillatory signals relates to cognitive processes, for example,

by reporting correlations between the signal’s power and

attention, sensory stimulus features, or the level of perfor-

mance during mental operations (Tallon-Baudry and Bertrand

1999; Hanslmayr et al. 2005; Thut et al. 2006; van Dijk et al.

2008; Hipp et al. 2011). In addition, accumulating evidence

demonstrates how the power of encephalographic potentials

relates to neural spiking in the cortical regions generating

these potentials (Schroeder et al. 1991; Coenen 1995; Nunez

2005; Whittingstall and Logothetis 2009). Insights such as these

promote the amplitude of encephalographic oscillations as an

important marker for studying brain function in health or

disease (Birbaumer et al. 2008; Engel and Fries 2010; Uhlhaas

and Singer 2010).

Recent work, however, started to put additional focus on

the dynamic signature of EEG/MEG activity (VanRullen et al.

2011). Several studies have shown that the precise temporal

structure of slow encephalographic oscillations as character-

ized by temporal patterns of the signal’s phase can also be

informative about sensory stimuli or details relating to the

cognitive task performed (Busch et al. 2009; Mathewson et al.

2009; Busch and VanRullen 2010; Stefanics et al. 2010; Drewes

and VanRullen 2011; Schyns et al. 2011). In the context of

acoustic stimuli such as speech tokens, for example, it has

been suggested that cortical rhythms commensurate with

prominent stimulus-inherent time scales may entrain selective

neural representations encoding these sounds (Howard and

Poeppel 2010). Especially, behaviorally relevant sounds,

such as speech or animal vocalizations, are dominated by

slow temporal dynamics (Drullman et al. 1994a, 1994b;

Chandrasekaran et al. 2009), and auditory cortex activity

seems to specifically reflect this input dynamics (Ahissar et al.

2001). Noteworthy, in some studies on acoustic processing,

the phase of slow oscillations proved to be more informative

about the presented sounds than the same signal’s power (Luo

and Poeppel 2007; Howard and Poeppel 2010), suggesting

that the sensory input imprints more on the precise dynamics

than on the overall amplitude of rhythmic brain activity.

Intriguingly, a similar benefit of using phase was found in

a visual categorization task (Schyns et al. 2011), suggesting

a more widespread sensory cortical phenomenon. Overall, this

highlights a potential link between the time scales of cortical

oscillations and those of the sensory environment (Schroeder

et al. 2008; Panzeri et al. 2010) and suggests that the precise

timing of encephalographic oscillations possibly constitutes

a powerful index of dynamic neural processing and sensory

representations (VanRullen et al. 2011).

However, the neural correlates underlying the information

carrying capacity of the phase of slow oscillations remain

unclear (VanRullen et al. 2011). Addressing this, we asked

whether and to what degree the apparent stimulus selectivity

seen in the precise timing of slow oscillations correlates with

the selectivity of neural firing rates in areas presumably

generating these oscillations. In our experiments, we used

the auditory system as model, and we employed the same set of

acoustic sounds in 2 experiments, one recording auditory-

driven scalp EEG responses in human subjects and one

recording intracortical field potentials and single neuron

responses in macaque auditory cortex. This permitted us to

directly compare the stimulus selectivity of the phase of

encephalographic and intracortical oscillations to the selectivity

of neural firing.
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Materials and Methods

Acoustic Stimulus
The acoustic stimulus presented during the experiments consisted of

a continuous 52 s long sequence composed of natural sounds. This

sequence was created by concatenating (without periods of silence) 21

1--4 s long snippets of different animal vocalizations, environmental

sounds produced by animals in their natural habitats, conspecific

macaque vocalizations, and a brief sample of human speech. A spectral

representation of this stimulus is shown in Figure 1A, together with the

frequency spectrum of its slow envelope modulations. The latter

reveals a 1/f pattern and shows peaks around 2, 4, and 8 Hz, typical for

natural sounds and communication signals (Chandrasekaran et al.

2009). The root mean square intensity of this stimulus was set to 65 dB

sound pressure level both for EEG and intracranial recordings (as

calibrated using a condenser microphone; Bruel & Kjær 2238 Mediator

sound level meter). The acoustic stimulus (i.e., full 52 s sound

sequence) was presented 60 times for each recording site in auditory

cortex and for each human subject in the EEG experiments. Individual

repeats of this stimulus were separated by several seconds of silent

intertrial intervals.

Human EEG Recordings and Data Preprocessing
Six subjects were paid to participate in the experiment. All reported

normal hearing and gave informed consent prior to the involvement.

The experiments were approved by the joint ethics committee of the

University Clinic and the Max Planck Institute Tübingen. Sixty-four

channel EEG signals were continuously recorded using an actiCAP

(Brain Products, Germany) with Ag/AgCl electrodes placed according

to the standard 10--20 system. The reference electrode was fixed at the

nose tip, and the ground electrode was in position AFz. A third

electrode was placed over the lower left orbit to register eye

movements. Electrode impedance was kept under 10 kX. Signals were

amplified using BrainAmp amplifiers (Brain Products), and data were

acquired at a sampling rate of 500 Hz using a band-pass filter of 0.318--

250 Hz. The experiments were conducted in a sound-attenuated room,

and the acoustic stimulus was presented using a Sennheiser In-Ear

headphone (Model PMX 80). The experiment was divided into 6 blocks

consisting of 12 presentations of the 52 s acoustic stimulus described

above. Each presentation was subject initiated, triggering a 2-s wait

period before stimulus onset. Subjects were performing a ‘‘dummy’’ task

requiring their attention to the stimulus: They were asked to detect

a single embedded target (sound of a crowd cheering, 1.3 s long) that

appeared on average in 1 of 6 stimulus repeats at a random time during

the 52 s stimulus sequence. Except for this interspersed target, the

stimulus in these trials was identical to the original acoustic stimulus

described above. Subjects performed this task at 93 ± 5% correct, and

these target trials were discarded from further analysis. Hence, only

data recorded during the presentation of the unique acoustic stimulus

described above, which was presented in both the human and animal

experiments, was used for analysis.

EEG data were analyzed in Matlab using tools from the EEGLAB

Matlab toolbox (Delorme and Makeig 2004). Individual trials were

rejected as containing artifacts if the amplitude on any of the central

channels (FC1-4, C1-4, CP1-4, FCz, CPz, and Cz) exceeded 7 standard

deviations (SDs) of the signal for a period longer than 120 ms. The

remaining trials (50 ± 11, mean ± SD) were kept and re-referenced to

Figure 1. Illustration of the acoustic stimulus, epoch selection for decoding, and example data. (A) The acoustic stimulus presented during the experiments consisted of a 52 s
long sequence composed of various natural sounds without periods of intermittent silence. The figure displays the sound wave, the spectrogram (red color indicates high sound
intensity), and the frequency spectrum of the slow sound envelope modulations (right panel). (B) Schematic of the sound epoch selection for decoding analysis. Sets consisting of
10 epochs (red bars) were randomly selected from within the acoustic stimulus. In total, 300 such sets were used, and the epoch duration was varied from 120 to 360 ms. (C)
Example traces of the central EEG signal on a single trial showing the phase (upper) and power (lower) of the 4--8 Hz band. (D) EEG phase coherence. The upper panel displays
the topography of the 4--8 Hz band phase coherence, the lower panel the frequency dependence (subject median for central electrodes, n 5 6). The gray line indicates the
significance level (P \ 0.01) obtained from a randomization test, performed across all frequency bands. (E) Example data of the 4--8 Hz power and phase across multiple trials
during one sound epoch used for decoding. This figure reveals a higher reliability of the phase value across trials, visible as a better alignment of the same signal values (color
code) across trials for phase. (F) Example decoding matrices. The decoding matrix indicates the percentage of trials in which a given ‘‘actual epoch’’ was decoded as each
‘‘decoded epoch.’’ Diagonal entries denote correctly decoded trials. The gray line on the color bar indicates above-the significance level (P \ 0.01). Note that for power, only 3
stimuli are decoded with above chance performance.
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a global average reference. For subsequent analysis, we averaged the

signals from those central electrodes to obtain one auditory-driven

scalp signal (unless specified otherwise). Individual frequency bands

(delta: 1--4 Hz, theta 4--8 Hz, alpha 8--14 Hz, beta 14--20 and 20--30 Hz,

gamma 30--50 Hz) were extracted using third-order Butterworth filters,

and the phase and power of these narrow-band signals were calculated

using the Hilbert transform. Power was defined as the squared absolute

value and phase as the phase angle of the Hilbert signal.

Intracranial Recordings and Data Preprocessing
Data were recorded from the auditory cortex of 3 alert male macaque

monkeys (Macaca mulatta) as part of a previous study (Kayser et al.

2009). All procedures were approved by local authorities (Regierung-

spräsidium Tübingen) and were in full compliance with the guidelines

of the European Community (EUVD 86/609/EEC). The animals were

socially (group-) housed in an enriched environment, and prior to the

experiments, form-fitting headposts and recording chambers were

implanted under aseptic surgical conditions and general balanced

anesthesia (Logothetis et al. 2010); antibiotics (Enrofloxacin; Baytril)

and analgesics (Flunixin, Finadyne vet.) were administered for 3--5 days

postoperatively. Neural activity was recorded using multiple micro-

electrodes (1--6 MOhm impedance), high-pass filtered (4 Hz, digital

two-pole Butterworth filter), amplified (Alpha Omega system), and

digitized at 20.83 kHz. Recordings were performed in a dark and

anechoic booth while the animals were passively listening to the

acoustic stimuli. Recording sites covered caudal auditory fields

(primary field A1 and caudal belt fields caudomedial and caudolateral)

as assessed based on stereotaxic coordinates, frequency maps con-

structed for each animal, and the responsiveness for tone versus band-

passed stimuli. While it is difficult to ascertain the particular cortical

layers recorded from, common biases in extracellular recordings suggest

that most recordings originate from supragranular or infragranular layers.

The 52 s acoustic stimulus described above was delivered from 2

calibrated free-field speakers in the left and right hemi fields at 70 cm

distance from the head and was repeated 60 times for each recording

site in distinct trials. Further details of the recording procedures can be

found in previous publications (Kayser et al. 2008, 2009).

Spike-sorted activity was extracted using commercial spike-sorting

software (Plexon Offline Sorter) after high-pass filtering the raw signal

at 500 Hz (third-order Butterworth filter). For the present study, only

sites with unit signals with high signal-to-noise ratio (SNR > 8) and less

than 2% of spikes with interspike intervals shorter than 2 ms were

included. For each recording site, the data from more than one unit

were typically recovered, and the unit with highest SNR was chosen for

subsequent analysis. Field potentials were extracted from the broad-

band signal after subsampling the original recordings at 1-ms resolution.

Individual frequency bands (theta 4--8 Hz, alpha 8--14 Hz, beta 14--20

and 20--30 Hz, gamma 30--50 Hz) were extracted using the same filters

as for the EEG signals.

Measure of Phase Coherence
The trial-by-trial coherence of the oscillatory phase (phase coherence;

Fig. 1D) was calculated for each time point t using the magnitude of the

complex-valued trial-averaged phase:

pcðt Þ=j <expði � uðt ÞÞ >j; ð1Þ
where u(t) denotes the time course of the phase of the considered

signal on an individual trials, <. > the trial average, and jj the absolute

value.

Decoding Analysis
Decoding analysis was used to quantify how well different epochs

sampled from the full 52 s acoustic stimulus could be discriminated

using EEG or intracranial signals. Specifically, we applied the decoding

analysis to sets of ‘‘sound epochs’’ that were randomly sampled from the

full acoustic stimulus sequence. Each set consisted of 10 nonoverlap-

ping epochs chosen at random locations within the 52 s sound but

excluding the first 1.5 s of this to avoid transient responses following

sound onset. The duration of these epochs was varied between 120 and

360 ms to ensure the validity of our results across different time

windows. The EEG or intracranial signals during these sound epochs

were sampled using 12-ms bins. For each set of sound epochs, we

applied the decoding analysis described below. The overall decoding

performance and correlation measures between different signals (see

below) were obtained by averaging over 300 sets of randomly chosen

sound epochs to ensure the generality of the results by thorough

sampling from the rich dynamics of the full stimulus sequence.

Importantly, the same stimulus sets (epoch positions within the

acoustic stimulus) were used for the analysis of EEG and intracortical

data permitting a direct comparison between the different signals

within a given stimulus context. Note that the epochs used for

decoding do not bear a particular relation to the individual sounds

snippets that were concatenated to create the 52 s acoustic stimulus

sequence presented during the experiments.

Decoding Procedure

Decoding was based on a linear discriminant decoder in conjunction

with a leave-one-out cross-validation procedure as used by previous

studies on the coding properties of auditory cortex (Russ et al. 2008;

Kayser et al. 2010). Decoding was applied to the sets of sound epochs

sampled from the acoustic stimulation sequence and for each set was

based on the individual repeats (trials) for each epoch (example data in

Fig. 1E). Specifically, for each trial of each epoch, we repeated the

following: 1) The average responses to all other 9 sound epochs were

computed across all repeats of the respective epochs. 2) For the

current epoch, the mean response was computed by averaging across

all trials but excluding the ‘‘test’’ trial. This generated ‘‘template’’

responses for each of the 10 sound epochs. 3) A measure of distance

(see below) was computed between the response on the test trial and

all templates. The test trial was decoded as that epoch yielding the

minimal distance between its template and the test response. By

repeating this procedure for each epoch and trial, we obtained the

decoding matrix, which contains the percentage of correctly and

wrongly (confused) decoded trials for each epoch (e.g., Fig. 1F).

Distance Measure

The distance between the single trial and the template in the decoding

process was calculated differently when using phase, power, or firing

rates. For the last 2, the distance was calculated as the Euclidean

distance between both time series: the squared difference between

both time series was summed over all time points. For phase, which is

a cyclic variable, a different distance measure was the magnitude of the

circular difference between both time series was summed over all time

points, whereby the circular difference is defined as min(ja – bj, 2p –

ja – bj).

Comparisons between Signals

To relate the stimulus selectivity between local field potential (LFP)

phase/power to firing rates, we compared the similarity of the

decoding performance at each recording site. Practically, this was

done by taking into account only the performance of correctly decoded

sound epochs (represented on the diagonal of the decoding matrix) or

by also including decoding errors (i.e., the full decoding matrix). We

computed the correlation between (either the diagonal or full)

decoding matrices derived from both signals and averaged over all

300 sets of sound epochs. Figure 4B,C shows the distribution of these

correlation values across recording sites. We also performed a re-

gression analysis for each site to quantify which signal (phase or

power) contributes more to predicting the decoding performance of

firing rates. The regression model was calculated across all 300 sets of

sound epochs, and normalized beta values and F-ratio statistics were

used to assess the contribution of phase and power (Sokal and Rohlf

1995). The F-ratio was used to obtain the fraction of variance explained

when each signal (phase or power) is omitted from the full model,

which provides a statistical assessment of the contribution of each

signal. To compare the stimulus selectivity between EEG phase or

power and firing rates that were not recorded simultaneously, we

exploited the fact that for both signals, the decoding performance was

evaluated using the same sets of sound epochs. For each signal, we

averaged the decoding performance across all recording sites, neurons,

or EEG subjects for each of the 300 sets of sound epochs. We then
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calculated the correlation of this averaged decoding performance

between EEG phase or power and firing rates across the 300 stimulus

sets.

Comparisons between LFP and EEG Phase Time Courses

Comparing the similarity of stimulus-evoked phase patterns across

nonsimultaneously recorded signals is difficult as the absolute phase

angle of field potential or EEG signals depends on the respective

reference signal (Nunez 2005). To still be able to compare the similarity

of the time course of the entrained phase pattern across LFP and EEG,

we based this comparison not on the actual phase but on a measure of

trial-by-trial phase similarity: phase coherence. The values of the phase

coherence are independent of the underlying phase but only reflect its

consistency across trials. The phase coherence time courses, with

unitless values between 0 and 1, can be hence compared across

different signals. Practically, we computed the correlation between the

phase coherence time courses between LFP and EEG bands across the

full stimulus sequence.

Statistical Significance

The significance of decoding performance was quantified using

a randomization test: We calculated the decoding performance by

repeating the decoding process 1000 times using data in which the

assignment between individual trials and sound epochs was shuffled.

From this, we obtained the 99% confidence interval from this

distribution corresponding to the null hypothesis of decoding

performance at chance level. One common significance level was

computed across frequency bands. A similar shuffling approach was

used to obtain a significance estimate for the phase coherence in Figure

1D.

Results

We recorded auditory cortex responses to a continuous 52 s

acoustic stimulus sequence consisting of naturalistic sounds

like environmental noises and animal calls. This sound

sequence provided a rich and dynamic stimulus whose slow

envelope modulations were dominated by low frequencies

around 4 and 8 Hz (Fig. 1A) and which evoked a robust and

dynamic signature in frequency scalp and LFPs and neural firing

rates, as illustrated below. To compare the degree of sound

selectivity in oscillatory activity and neural firing rates, we used

a framework of stimulus decoding. Such decoding analysis

quantifies how well a given set of sensory inputs can be

discriminated given the observed single-trial responses and

provides a measure of signal selectivity with respect to the

sensory input. We applied the decoding analysis to short sound

epochs randomly sampled post hoc (for analysis only) from the

52 s acoustic stimulus presented during the actual experiments

(Fig. 1B). Specifically, we randomly created 300 sets consisting

of 10 sound epochs to evenly sample the rich structure of the

long acoustic stimulus presented during the experiments. In

the following, we first report on the decoding results from EEG

and LFP data separately, and we subsequently show how the

selectivity of the phase of slow oscillations relates to the

selectivity of neural firing rates.

Stimulus Decoding Using Power and Phase of EEG
Oscillations

We recorded EEG activity from 6 volunteers that performed an

acoustic target detection task while listening to the acoustic

stimulus sequence. Previous studies have shown that in

response to prolonged acoustic stimuli activity in auditory

cortex entrains (i.e., time locks) to the slow components of the

acoustic input. This entrainment results in a pattern of

oscillatory phase that is consistent across trials (cf. Fig. 1E)

and which can be measured using cross-trial phase coherence

(Luo and Poeppel 2007; Kayser et al. 2009; Howard and

Poeppel 2010). For the present data, phase coherence was

highest over central electrodes and strongest in the theta

(4--8 Hz) frequency band (median 0.2, randomization test P <

0.01; Fig. 1D). This central localization of sound-entrained

oscillations is in good concordance with the known projec-

tions of auditory dipoles in human scalp EEG (Nunez 2005;

Burkard et al. 2006; Stefanics et al. 2010). Following previous

studies, we focused on the signal from these central locations

for subsequent analysis, ensuring that the analyzed EEG signals

reflect scalp potentials generated by auditory cortex neurons

analyzed in the subsequent step.

The stimulus selectivity of slow EEG oscillations was

analyzed using decoding analysis, separately for the phase and

power in different bands of the EEG signal and separately for

a range of time windows. Figure 1E illustrates the power and

phase on all trials for one sound epoch sampled from the long

acoustic stimulus (240-ms duration). Clearly, the phase is more

consistent across trials than power, reflecting the entrainment

of the oscillatory dynamics by the acoustic stimulus (visible as

consistent color coding across trials). The decoding algorithm

was applied to the collection of single-trial responses for each

of the 10 sound epochs within each set, was based on a linear

classifier and resulted in a decoding matrix that provides

a measure of correctly and wrongly decoded (i.e., confused)

sound epochs (Fig. 1F).

Decoding performance using EEG signals was strongest in

the 4--8 Hz band, while lower (1--4 Hz) and higher ( >8 Hz)

bands yielded poorer performance (Fig. 2A). Importantly,

decoding performance was considerably higher when using

phase (median value 4--8 Hz: 15.3% correct) rather than power

of individual EEG bands (4--8 Hz: 12.2%; sign-rank test P < 0.05).

A randomization test demonstrated the significance for phase

(P < 0.01 for 1--4 and 4--8 Hz), while decoding from power did

not reach significance in any band (Fig. 2A). Similar results

were found when decoding sound epochs of different duration,

ranging from 120 to 360 ms (Fig. 2B). Repeating the decoding

analysis separately on individual electrodes confirmed that

regions of highest selectivity were concentrated over central

locations (Fig. 2C), hence on electrodes with strongest cross-

trial phase coherence. Decoding performance was comparable

when using only electrode locations on the left (median

14.4%), right (14.5%), or both hemispheres (15.3%). This

extends previous results derived using speech (Luo and

Poeppel 2007; Howard and Poeppel 2010) to more general

and complex naturalistic sounds and highlights the significant

stimulus selectivity in the precise timing of slow cortical

oscillations.

Acoustically, entrained slow rhythmic activity is character-

ized by a dynamic phase pattern and time-varying levels of

signal power. In particular, periods during which the signal’s

power is increased compared with a sound-devoid baseline

alternate with periods during which the power differs only

little from baseline (cf. Fig. 1C). While increased power is

characteristic of traditional evoked components in oscillatory

signals such as EEG, phase resetting in the absence of additional

increases in power has been considered as one possible

generating mechanism for event-related potentials (Makeig

et al. 2002; Sauseng et al. 2007). Pure phase resetting has been

previously described in auditory cortex both for auditory and

crossmodal inputs (Lakatos et al. 2007, 2009) raising the
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possibility that stimulus-informative oscillatory patterns could

occur in the absence of increases in signal power. We

performed an additional analysis to directly test whether this

was indeed the case. Specifically, we asked whether sound

epochs that were well decoded using their low-frequency

phase pattern necessarily required an increase of power

compared with baseline (a prestimulus period). Figure 2D

displays the decoding performance of theta (4--8 Hz) phase

versus the normalized power of the same signal for individual

epochs across subjects. While power was generally above

baseline (red circles denote the mean for each 10% perfor-

mance range), many epochs were well decoded using their

phase pattern despite the power being close to baseline. The

overall correlation between power increase and decoding

performance was weak (r2 = 0.021). This shows that theta-band

oscillations can be stimulus entrained and provide a stimulus-

specific phase pattern even in the absence of changes in

oscillatory power, highlighting the prominence of phase reset

as one mechanism by which natural sounds imprint on auditory

cortex activity.

Stimulus Decoding Using Intracranial LFPs and Neural
Firing Rates

To link the stimulus selectivity of EEG activity to more direct

measures of neural activity, we analyzed LFPs and spiking

activity recorded using microelectrodes at 36 sites in the

caudal auditory cortex of awake macaque monkeys listening to

the same acoustic stimulus sequence (see Kayser et al. 2009).

Similar to the EEG, LFPs revealed the imprinting of the acoustic

stimulus on the temporal profile of slow oscillations (Fig. 3A):

low-frequency LFPs exhibited high values of cross-trial phase

coherence (median 4--8 Hz: 0.39), revealing a similar frequency

dependence of oscillatory phase coherence in EEG and LFPs. In

addition, also the time courses of stimulus entrainment in theta

oscillations were similar between the scalp EEG and the

intracranial LFPs. Because the relative phase and amplitude

between frequency bands extracted from LFPs and EEG may

differ due to tissue filtering and reference selection (Nunez

2005), we quantified the similarity of these signals using

the time course of the phase coherence: The subject- (EEG)

and site- (LFP) averaged time courses of phase coherence

were significantly correlated between EEG and LFP (r = 0.34,

P < 10
–10) and were of comparable magnitude as correlations

between the time courses derived from individual human

subjects (0.45 ± 0.015, mean ± standard error of the mean

[SEM]) or individual intracranial recording sites (0.28 ± 0.01,

mean ± SEM). The acoustic stimulus hence imprinted

temporally similar dynamic signatures in slow oscillatory

patterns in intracortical and scalp field potentials. Still,

correlated patterns of phase coherence do not imply similarity

in phase-related stimulus selectivity, which requires further

analysis (see below).

Sound epoch decoding from LFPs showed a similar de-

pendency on frequency band and epoch duration as decoding

the same epochs from scalp EEG (Fig. 3B,C). Decoding

performance using LFPs peaked in low-frequency bands

(4--8 Hz) and was significant for both power and phase

(randomization test, P < 0.01). As in the case of EEG, decoding

performance was significantly higher when using phase rather

than power (e.g., 4--8 Hz band: median 27.8% vs. 16.6%, sign-

rank test P < 10
–6; Fig. 3B). The firing rates of 36 neurons

recorded at the same locations as the LFPs were also stimulus

selective (Fig. 3A). The time-binned firing rate of individual

neurons permitted a level of sound epoch discrimination

comparable to that provided by the low-frequency phase

(median 22.4% for 240-ms windows; Fig. 3B,C). Overall, this

demonstrates common patterns of stimulus-selective activity in

scalp and LFP oscillations with a superiority of phase over

power in providing stimulus-specific activity patterns.

Predicting Firing Rate--Based from EEG/LFP-Based
Decoding

To relate the selectivity and decoding performance derived

from slow oscillatory signals to that of neural firing rates, we

performed 2 analyses. The first was based on the similarity of

the degree to which individual sound epochs were correctly

decoded using firing rates or the theta-band (4--8 Hz) LFP: we

computed the correlation of the percentage of trials at which

each of the 10 epochs was correctly decoded (the diagonal of

the decoding matrix) across all 300 sets of sound epochs. This

effectively implements a comparison of ‘‘response preference’’

by quantifying whether sound epochs that can be well

separated from others using the LFP can also be separated

using firing rates and vice versa. We found the decoding pattern

to be more similar between phase and firing rates (240-ms time

window: median correlation 0.19; Fig. 4A) than between power

Figure 2. Sound epoch decoding from EEG data. (A) Decoding performance shown
as the percentage correctly decoded trials as a function of frequency band (using
epochs of 240-ms duration). Thick lines denote the median across subjects (n 5 6),
and the gray line indicates the significance level (P \ 0.01) from a randomization test
(a common significance level across all frequencies was computed). Thin lines
indicate single subject data. (B) Decoding performance as a function of sound epoch
duration for the theta (4--8 Hz) band. Conventions as in (A). (C) Topography of
decoding performance shown as the subject-averaged decoding performance for the
theta (4--8 Hz) band. (D) Decoding performance using theta phase as a function of
theta power in the same sound epoch across sound epochs and subjects. Each dot
corresponds to a single sound epoch. Power values were normalized to a prestimulus
period (1-s period before stimulus onset) using z-score. Red circles indicate the mean
power per 10% range of decoding performance.
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and firing rates (median 0.11). Across recording sites, the

similarity with the phase was systematically (e.g., 29 of 36

neurons, 80%; Fig. 4B) and significantly higher (sign-rank tests

for each time window, P < 10
–3), and similar results were found

for all time windows (Fig. 4A). The second comparison was

based on the similarity of the full decoding matrix, hence also

taking into account the degree to which both signals ‘‘confuse’’

different epochs during decoding. Again, correlations between

LFP phase and firing rates were stronger (median 0.25) than

between LFP power and firing rates (median 0.13), a significant

effect across sites (120-ms window P < 10
–3, 240 and 360 ms

P < 10
–5; Fig. 4C).

We also performed a multiple regression analysis testing how

much the decoding pattern in firing rates can be predicted

using those derived from the LFP. The standardized beta values,

which quantify the contribution of power and phase to

predicting the decoding performance of firing rates, were

significantly higher for phase (240-ms window: median value

0.23) than for power (median 0.1; sign-rank tests at least P <

10
–4; Fig. 4D). The conclusion that the phase of slow

oscillations is a better predictor for the selectivity of firing

rates than the power is also supported by quantifying the

contribution of phase and power to the joint performance in

predicting decoding patterns in firing rates: The F-ratio for the

contribution of phase (median F = 1035) was significantly

higher than that for the contribution of power (median F = 336;

sign-rank test P < 10
–5). This demonstrates that the degree to

which different sound epochs can be decoded from neural

firing rates is better predicted by the phase pattern of theta-

band oscillations than by their power.

Importantly, the pattern of sound discrimination afforded by

LFPs was similar to that by encephalographic potentials

obtained using EEG. By exploiting a comparison across the

sets of sound epochs used for decoding, we were able to

directly compare the discrimination performance obtained

from intracranial signals and scalp EEG, despite them not being

recorded at the same time. We computed the correlation of the

overall decoding performance across all 300 epoch sets using

the average percentage of correctly identified epochs for each

set as discrimination measure. This confirmed the above

reported higher correlation between firing rates and LFP phase

(r = 0.62, randomization test P < 0.01) than between firing rates

and LFP power (r = 0.52, P < 0.01). In addition, this revealed

a close correspondence between decoding performance in LFP

phase and EEG phase (r = 0.48, P < 0.01) and a weaker

correlation between LFP power and EEG power (r = 0.22, P <

0.01). And most importantly, this revealed that discrimination

performance was significantly correlated between firing rates

and EEG phase (r = 0.25, P < 0.01) but not between firing rates

and EEG power (r = 0.08, P > 0.05; Fig. 4E). Stimulus-selective

patterns in the phase of slow encephalographic potentials that

permit the discrimination of different sound epochs hence co-

occur with similarly selective patterns in the underlying neural

firing in auditory cortex.

Discussion

Recent work suggests that the dynamics of encephalographic

oscillations reflect stimulus-specific activity patterns and that the

sensory information carried by slow oscillations is greater in

their precise timing (phase) compared with their amplitude

(power) (Luo and Poeppel 2007; Howard and Poeppel 2010; Luo

et al. 2010; Schyns et al. 2011). The phase of slow oscillations can

also serve as a proxy for the excitability or attentional state of

cortical networks and can predict whether weak sensory stimuli

will be perceptually detected (Busch et al. 2009; Mathewson

et al. 2009; Stefanics et al. 2010; Drewes and VanRullen 2011).

These observations pinpoint the phase of slow oscillations as

a powerful indicator to study sensory processing and cognition

(VanRullen et al. 2011). However, it remains unclear whether

the stimulus selectivity reported for the phase of EEG signals

directly reflects the selectivity of neurons in the underlying

sensory areas or whether this observed selectivity rather results

from the indirect and aggregate nature of encephalographic

signals. Our results clearly speak in favor of the first alternative

by demonstrating a direct correlation between the stimulus

selectivity in neural firing and EEG phase patterns in the context

of naturalistic sounds.

Dynamic Auditory Signatures in the EEG

Dynamic complex stimuli, such as natural sounds or movies,

can entrain neural activity at early stages of the respective

sensory cortices (Luo and Poeppel 2007; Lakatos et al. 2008;

Montemurro et al. 2008; Schroeder and Lakatos 2009). This

entrainment is reflected in the dynamics of neural firing and

slow field potentials, where it is visible as a consistent

Figure 3. Sound epoch decoding from intracranial LFPs and firing rates. (A) Example data from one recording site showing traces of the theta (4--8 Hz) band LFP and spike raster
of one unit. The phase of the LFP was color-coded, and the raster shows the timing of individual action potentials across trials for a 3 s excerpt of the full 52 s acoustic stimulus.
(B) Decoding performance shown as the percentage correctly decoded trials as a function of frequency band (using epochs of 240-ms duration), for LFP power, LFP phase, and
firing rates. Lines denote the median across recording sites (n 5 36), and the gray line indicates the significance level (P \ 0.01) from a randomization test (a common
significance level across all frequencies was computed). (C) Decoding performance as a function of sound epoch duration for the LFP theta (4--8 Hz) band and firing rates.
Conventions as in (B).
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alignment of the neural signal relative to the sensory stimulus.

The entrainment of large-scale population activity can also be

registered from outside the scalp where it results in stimulus-

locked oscillatory phase patterns. Our results show that the

encephalographic phase patterns reflect stimulus-selective

activation patterns evoked by the neural responses of those

cortical areas generating the oscillations. Specifically, we found

that the time course of oscillatory phase coherence was

correlated between scalp EEG and intracranial LFP oscillations,

demonstrating similar temporal drive in both signals. In

addition, we found that the selectivity of neural firing rates

within a specific stimulus context correlates with the

selectivity of EEG phase but not EEG power; in other words,

stimuli that were well discriminable using firing rates were

likely also discriminable using phase patterns and vice versa.

Given the spatial separation between EEG scalp electrodes

and auditory cortical neurons, this match of selectivity could

not be expected a priori. In particular, auditory-evoked EEG

signals were recorded over central scalp locations, which are

known to be most sensitive to the electric fields generated by

presumed dipole sources located in auditory cortex (Burkard

et al. 2006; Stefanics et al. 2010). The auditory cortex itself,

however, is buried within a sulcus and separated from the

central scalp locations by cortical folds and at several

centimeters distance, reducing the passive electrical coupling

to central scalp locations (Kajikawa and Schroeder 2011).

While this spatial separation between auditory cortex neurons

and central scalp locations makes the common phase entrain-

ment in EEG or LFP oscillations nontrivial, it may also result in

a contribution of additional brain structures outside auditory

cortex to the EEG. In general, activity not originating from

auditory cortex may nevertheless carry acoustic information,

for example, by virtue of cross talk between sensory streams

(Ghazanfar and Schroeder 2006; Kayser and Logothetis 2007).

Signals not directly related to the experimental sound stimulus

may contribute as ‘‘noise’’ to the decoding performance and

could possibly reduce the apparent selectivity of the EEG

signal. Indeed, we observed lower decoding performance in the

same frequency bands derived from EEG than LFP. While this

may well arise from additional and not stimulus-related

components in the EEG, there are several reasons for why

such additional influences are likely to be small. By design of

the experiment, the human subjects were only presented with

an acoustic stimulus, hence reducing stimulation of other

modalities. In addition, subjects were paying attention to this

stimulus, as required by the task and shown by their good

performance. Attention is known to improve the entrainment

of early sensory areas to sensory stimuli and hence strengthens

the auditory-driven component of the studied EEG signals

(Lakatos et al. 2008). Together with the comparable profile of

stimulus selectivity in low-frequency oscillations reported in

previous MEG studies (Luo and Poeppel 2007; Howard and

Poeppel 2010), this suggests that the EEG signals analyzed here

indeed mostly originate from auditory cortex.

Acoustic Entrainment and Its Putative Function in
Auditory Processing

Slow temporal envelope modulations are characteristic for

naturalistic sounds, such as speech or animal vocalizations

(Chandrasekaran et al. 2009). They are important for in-

telligibility, and in the case of speech, they carry information

about syllabic structure (Rosen 1992; Drullman et al. 1994a,

1994b). Neural activity in auditory cortex phase locks to these

slow modulations not only at the level of field potentials but

also individual neurons exhibit responses that are time locked

to the slow stimulus dynamics or are tuned to specific temporal

modulation frequencies (Lu et al. 2001; Wang et al. 2008). It

remains unclear whether this phase locking of single neurons is

the direct generator of stimulus entrained low-frequency

oscillations or whether more complicated circuits involving

intracortical or thalamocortical loops are involved. However,

a recent study has shown that the firing of auditory cortex

neurons is time locked to the phase of low-frequency rhythms,

especially during periods when neurons are strongly driven by

Figure 4. Correlation of sound epoch selectivity in oscillations and firing rates. (A)
Correlation of decoding performance between theta (4--8 Hz) band LFP phase/power
and firing rates recorded from the same sites (240-ms epoch duration). The
correlation was computed considering only the performance of correctly decoding
individual stimuli (diagonal of the decoding matrix) and was calculated across all 300
stimulus sets. Box plots display the median and 25th and 75th percentiles (boxes)
across sites (n 5 36). (B) Individual correlation values for LFP phase and power
(240-ms epoch duration, 4--8 Hz band), each dot corresponds to one recording site.
The difference was highly significant (sign-rank test P \ 10�3). (C) Correlation of
decoding performance between LFP phase/power and firing rates when considering
the full decoding matrix (240-ms epoch duration, 4--8 Hz band). The difference was
highly significant (sign-rank test P \ 10�4). (D) Normalized beta values of a multiple
regression analysis modeling the decoding performance of firing rates using that of
theta-band LFP phase and power. Box plots display the median and 25th and 75th
percentiles (boxes) across sites (n 5 36). (E) Correlation of the total decoding
performance (percentage of total correctly decoded trials) computed across the 300
stimulus sets between firing rates and theta-band EEG phase/power (240-ms epoch
duration).
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the sensory input (Kayser et al. 2009). This temporal spike

phase relation creates an intriguing interplay between oscil-

lations and neural firing (Panzeri et al. 2010), which may well

be the reason of the reported correlations in stimulus

selectivity between theta oscillations and neural firing rates.

It is worth noting that the entrainment of low-frequency

rhythms is not restricted to naturalistic stimuli (Lu et al. 2001).

It has been known for a while that rapid transitions or changes

of amplitude or dominant frequency in acoustic stimuli evoke

low-frequency complexes in EEG or MEG responses (Pantev

et al. 1986; Hari et al. 1987) and a recent study demonstrated

that MEG theta-band phase locking also persists for unintelli-

gible complex sounds. Specifically, this study showed that

entrained theta-band rhythms can be described by a periodic

signal that is directly driven by low-frequency envelope

changes of the acoustic stimulus (Howard and Poeppel

2010). This promotes a view by which entrainment is not

specifically evoked by communication or behaviorally relevant

sounds but rather reflects the dynamic imprinting of those slow

sound envelope modulations that are crucial to distinguish and

recognize complex natural sounds (Luo and Poeppel 2007;

Schroeder et al. 2008). Entrainment may hence be necessary

but not sufficient for intelligibility or comprehension.

Our results show that stimulus-entrained and stimulus-

selective phase patterns can occur in the absence of increases

in oscillatory power in the same frequency band. The control

over oscillatory phase in the absence of changes in the same

signals power is known as phase resetting and may be easily

missed when studying only short sound stimuli. The initial

transient from silent baseline to acoustic stimulation is often

accompanied by evoked responses including an increase in

oscillatory power, and the use of longer and continuous

stimulation sequences, such as in the present study, is

advantageous to detect periods of pure phase resetting.

Together with the above, our findings reinforce the notion

that phase resetting plays a central role in auditory encoding,

possibly as a means for stimulus selection or segregation

(Schroeder and Lakatos 2009).

The segmentation of auditory scenes into distinct objects

and the formation of representations that are invariant to

irrelevant or distracting sounds are 2 of the central functions

attributed to (primary) auditory cortex (Nelken 2008; Sharpee

et al. 2011). This, however, can also create difficulties when

studying auditory cortex in the context of natural sounds, as

selectivity to some and invariance to other features can result

in comparable responses to distinct stimuli. To deal with this

problem and to avoid making specific assumptions about the

feature selectivity of auditory neurons or field potentials, we

followed previous studies and exploited a decoding-based

framework that is feature agnostic (Howard and Poeppel 2010;

Luo et al. 2010; Cogan and Poeppel 2011). Rather, we used the

identity of individual short epochs as decoding tag, and to

ensure the generality of our results, we compared the decoding

performance across multiple selections of sound epochs

chosen at random from a rich sound sequence. Still, one may

conceive that the observed decoding consistency between

firing rates and oscillations results from spurious correlations

rather than direct and possibly causal interrelations. For

example, neural firing rates and theta oscillations may be

selective to distinct stimulus features that simply happen to be

correlated within the explored stimulus set. While correlations

between complex acoustic features surely prevail in naturalis-

tic sounds in general, such exquisitely patterned correlations

seem unlikely given the large number of sound epochs

explored and their duration of several hundreds of milli-

seconds. A more parsimonious explanation for the correlated

selectivity in firing rates and phase patterns is that both signals

are sensitive to the same acoustic features because the

processes generating the oscillatory signal are mechanistically

related to firing rates, as evidenced by the phase locking of

spikes to slow cortical rhythms (Panzeri et al. 2010).

The Timing of Neural Activity and the Human--Simian
Correspondence

The timing of neural responses and oscillations differs between

humans and monkeys in general. For example, latencies of

evoked responses to sensory stimuli in the monkey brain

amount to about 3/5 of those in the larger human brain

(Schroeder et al. 1995, 2004). However, this timing difference

has been mostly studied in the context of evoked responses,

and it remains unclear whether similar differences in time

scales also pertain to ongoing or oscillatory activity. One could

conceive that the same cortical circuits or neuron types

generate signals of somewhat different frequency in humans

and animals or that signals of the same frequency originate

from different neural structures in these species. Yet, current

consensus holds that oscillatory frequency bands and the

underlying neural generators are comparable across species

(Engel and Fries 2010; Uhlhaas and Singer 2010). And in

particular with regard to the prominence of theta-band activity

in auditory cortex, there is a good agreement between the

frequency ranges reported in human MEG and EEG studies

(about 2--8 Hz) (Ahissar et al. 2001; Luo and Poeppel 2007;

Howard and Poeppel 2010; Luo et al. 2010) and those reported

for intracranial signals recorded in the monkey (about 2--9 Hz)

(Lakatos et al. 2005, 2007; Kayser et al. 2009; Chandrasekaran

et al. 2010); even despite the use of different criteria to

determine the relevant frequency range and the use of

different stimuli in these studies. Hence, while we cannot rule

out potential differences in the generators of auditory theta

rhythms in humans or monkeys, it seems likely that the same

frequency range reflects similar and auditory-driven processes

in both species. Definite answers on such questions, however,

can only be obtained once all neural signals can be recorded

from the same subjects, either in an animal model or a human

patient.

Interpreting Oscillatory Activity Patterns

Our results demonstrate that if a set of stimuli can be

discriminated using the oscillatory phase pattern, they can

likely be discriminated by firing rates and vice versa. This,

however, does not necessarily imply a direct correlation of

particular phase patterns to the strength of neural firing, as

a high stimulus discrimination level is independent of whether

discrimination of a given stimulus results from high or low

levels of firing rates. In addition, our results show that stimulus

discrimination from phase patterns does not necessitate

increases in power of the same oscillatory frequency band.

Specifically, we found that there is no reciprocal relationship of

stimulus selectivity between firing rates and oscillatory ampli-

tude (power), and our results demonstrate that stimuli which

can be discriminated using their phase patterns can occur in the

absence of increases of oscillation power. Thereby, our findings
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demonstrate a level of interrelation between scalp EEGs and

neural activity that goes beyond previously reported correla-

tions between the strength of neural firing and the amplitude

of EEG oscillations (Schroeder et al. 1991; Whittingstall and

Logothetis 2009). Our findings pertain to similarities in

stimulus preference rather than in signal amplitude, and in

general, correlations between amplitudes and selectivity

concern 2 signal properties that are not necessarily dependent

and which may offer complementary insights into the de-

pendencies of different signals of neural activity. Together with

other recent studies on encephalographic phase patterns, our

findings enhance the link between the activity of sensory

cortical neurons and noninvasively measured field potentials

and improve the interpretation of EEG-based studies and their

implications toward understanding the neural dynamics of

sensory perception.

Funding

This work was supported by the Max Planck Society and

Bernstein Center for Computational Neuroscience Tübingen,
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