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The brain’s intrinsic functional architecture, revealed in correlated
spontaneous activity, appears to constitute a faithful representation
of its repertoire of evoked, extrinsic functional interactions. Here,
using broad task contrasts to probe evoked patterns of coactiva-
tion, we demonstrate tight coupling between the brain’s intrinsic
and extrinsic functional architectures for default and task-positive
regions, but not for subcortical and limbic regions or for primary
sensory and motor cortices. While strong correspondence likely
reflects persistent or recurrent patterns of evoked coactivation,
weak correspondence may exist for regions whose patterns of
evoked functional interactions are more adaptive and context
dependent. These findings were independent of task. For tight task
contrasts (e.g., incongruent vs. congruent trials), evoked patterns of
coactivation were unrelated to the intrinsic functional architecture,
suggesting that high-level task demands are accommodated by
context-specific modulations of functional interactions. We con-
clude that intrinsic approaches provide only a partial understanding
of the brain’s functional architecture. Appreciating the full
repertoire of dynamic neural responses will continue to require
task-based functional magnetic resonance imaging approaches.
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Introduction

Large-scale functional systems revealed by task-based and task-

free (‘‘resting state’’) functional magnetic resonance imaging

(fMRI) appear strikingly similar, despite marked differences in

the phenomena they measure. The strong correspondence

between the brain’s extrinsic (task-evoked) and the intrinsic

(task-free, spontaneous) architecture suggests that the brain’s

intrinsic functional architecture provides a framework for its

moment-to-moment responses to the external world (Fox et al.

2006; Raichle 2010). Accordingly, Smith et al. (2009, p. 13040)

proposed that ‘‘the full repertoire of functional networks

utilized by the brain in action is continuously and dynamically

‘active’ even when at ‘rest’.’’ Such assertions raise classic

cognitive neuroscience questions about the extent to which

functional interactions among brain regions are fixed and

invariant or dynamic and flexible.

Evidence for the linkage between the brain’s intrinsic and

extrinsic architectures remains preliminary. Initial studies

suggested strong correspondence between intrinsic connec-

tivity networks derived on the basis of resting-state data and

task-evoked coactivation networks detected using large-scale

meta-analytic approaches (Toro et al. 2008; Smith et al. 2009).

Although powerful, task-based meta-analytic approaches cannot

capture covariation in task-evoked hemodynamic responses

across trials, which would more closely parallel the temporal

phenomena that form the basis of intrinsic connectivity

approaches. Building on these findings, recent studies have

documented the relationship between intrinsic connectivity

networks and task-evoked activation at the individual participant

level (Mennes et al. 2010; Gordon et al. forthcoming). These

studies focused on intrinsic connectivity at a macro network

level, investigating networks that were data driven (Gordon et al.

forthcoming) or derived from a priori selected regions of

interest (Mennes et al. 2010).

Here, we investigated regional variation in the degree to

which patterns of task-evoked functional interactions mirror

the brain’s intrinsic functional architecture, using a voxelwise

approach. This was accomplished at the participant level by

computing the spatial correlation between patterns of in-

trinsic functional connectivity (iFC) and patterns of task-

evoked functional connectivity (or coactivation; eFC) for each

voxel in the brain. iFC was defined as the correlation between

each gray matter voxel’s resting-state time series and that of

every other gray matter voxel in the brain. Likewise, eFC was

defined as the pairwise correlation between each voxel’s

trialwise task-evoked hemodynamic responses. Trialwise task-

evoked responses were estimated using regression, where

individual trials were modeled as independent predictors,

yielding a time series of evoked response estimates (Rissman

et al. 2004). Finally, we correlated iFC-eFC patterns on

a within-subject voxelwise basis quantifying the similarity

between patterns of intrinsic and task-evoked functional

interactions.

To ensure generalizability, we applied this approach to 3

data sets each including a resting-state scan and specific task: 1)

an ‘‘Eriksen Flanker’’ task, 2) a ‘‘Simon Stimulus-Response

Compatibility’’ task, and 3) a ‘‘Risky Decision-Making’’ task

(for details, see Supplementary Methods and for task-evoked

activity maps, see Supplementary Fig. 1). Twenty-one partic-

ipants in the ‘‘Flanker’’ and ‘‘Decision-Making’’ data sets over-

lapped. The ‘‘Simon’’ data set constituted an independent

sample. Finally, we assessed iFC-iFC similarity using resting-

state scans collected ~45 min and 5--16 months apart in the

same participants (Shehzad et al. 2009).

Materials and Methods

Participants
We included 3 task data sets that differed with respect to task paradigm

and participant sample. All participants were adults without a history of
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psychiatric or neurological illness as confirmed by psychiatric assess-

ment. Written informed consent was obtained prior to participation as

approved by the institutional review boards of New York University

(NYU) and the NYU School of Medicine.

Twenty-six participants (mean age 28.5 ± 8.5 years, 11 males)

completed a slow event-related Eriksen Flanker task scan, 21

participants (mean age: 30.5 ± 7.3 years, 12 males) completed a rapid

event-related Simon stimulus-response compatibility task scan, and 24

participants (mean age: 29.9 ± 8.5 years, 16 males) completed a rapid

event-related Risky Decision-Making task scan. In addition, all

participants completed a brief (6.5 min) resting-state scan during

which they were asked to relax while keeping their eyes open. The

order of the resting-state and task scans was counterbalanced across

participants. A subset of 21 participants (including 6 participants who

did not complete any task scans) completed 3 resting-state scans (test--

retest resting state). Two scans were completed in the same session

(i.e., ~45 min apart), while the third scan was completed 5--16 months

prior to the first 2. In total, task data were collected from 50 unique

participants. The 21 participants who completed the Simon task did not

complete the Eriksen Flanker or Risky Decision-Making tasks. Five

participants completed only the Eriksen Flanker task, while 3

completed only the Risky Decision-Making task. Of the 21 participants

who completed the test--retest resting-state scans, 6 did not complete

any of the task scans. Additional details on the task paradigms and

participant overlap between data sets are available in Supplementary

Methods.

Image Acquisition
All scans were acquired using a standard Siemens head coil on

a Siemens Allegra 3.0-T scanner. fMRI scans were collected as

contiguous echo planar imaging whole-brain volumes, and for spatial

normalization and localization we obtained a high-resolution T1-

weighted magnetization prepared gradient echo sequence from each

participant. Acquisition and image preprocessing details are provided in

Supplementary Methods.

General Analyses Description
We defined iFC as the temporal correlation between voxels’ resting-

state fMRI time series and eFC as the correlation between voxels’ task-

evoked hemodynamic responses across trials. Only voxels that had

a probability of being gray matter exceeding 25% in the FSL avg152 gray

matter tissueprior were included in our analyses. Preprocessing and

analysis specifics are provided in Supplementary Methods.

eFC Time Series extraction

After preprocessing the task scans, we conducted a participant-level

multiple regression for each task, modeling trials as individual

predictors (Rissman et al. 2004; see Supplementary Methods) and

comparing them to all remaining activity (i.e., fixation or intertrial

intervals, hereafter referred to as ‘‘baseline’’). Using this method, we

obtained an estimated evoked response (beta value) for each trial that

was used to construct a time series of estimated trialwise evoked

responses. This time series allowed us to calculate voxelwise eFC maps.

Only correctly answered trials were modeled in the participant-level

multiple regression. For the Eriksen Flanker, this procedure resulted in

beta values for each of 24 congruent and 24 incongruent trials if all

trials were answered correctly. The method developed by Rissman et al.

(2004) was originally devised for the analysis of slow event-related

designs but can be applied to rapid event-related designs. However,

applying this method to rapid event-related designs may lead to

inadequate beta estimation for consecutive trials due to summation of

the blood oxygen--level dependent (BOLD) signal, especially when

trials are closely spaced in time. To minimize estimation losses due to

BOLD signal overlap inherent to the rapid event-related designs

employed for the Simon and Risky Decision-Making tasks, we optimized

response estimation by randomly grouping 4 trials of the same type into

a predictor instead of modeling each trial separately. Each trial was

included only once. In the Simon task, we randomly grouped trials

counterbalancing for the previously presented trial, resulting in beta

values for each of 24 congruent and 24 incongruent ‘‘trials.’’ In the Risky

Decision-Making task, beta values were obtained for 42 decision and 42

feedback predictors, each including 4 randomly selected decision or

feedback events. Beta value time series were registered to 3 mm

Montreal Neurological Institute (MNI)152 standard space prior to eFC

calculations.

iFC-eFC Relationship Computations

After registering each participant’s preprocessed resting-state scan to 3

mm MNI152 standard space, we generated each voxels’ iFC map by

correlating its resting-state time series with that of every other gray

matter voxel. Similarly, we calculated the eFC map for each gray matter

voxel, by correlating each voxel’s beta value time series quantifying the

magnitude of task-evoked responses with the beta value time series of

every other gray matter voxel.

Subsequently, for each participant, we calculated the spatial

correlation between each voxel’s iFC and eFC map. This analysis

resulted in a map for each participant that indexed for every voxel how

similar its pattern of task-evoked functional interactions (eFC map) was

to its intrinsic functional architecture (iFC map).

For the Risky Decision-Making task, we calculated eFC maps for

the decision and feedback trials separately (decision vs. baseline;

feedback vs. baseline). For the Eriksen Flanker and Simon task we

included eFC maps calculated across congruent and incongruent trials

(congruent + incongruent vs. baseline) as well as iFC-eFC relationships

obtained using eFC maps calculated for each trial type separately and

for ‘‘tight’’ comparisons. For the latter, we calculated eFC maps for

incongruent versus congruent by subtracting each voxel’s eFC map

obtained for congruent trials from the eFC map obtained for

incongruent trials.

To identify those voxels whose iFC-eFC correlation was significantly

different from 0 across participants, we conducted group-level analyses

for every data set using FSL FEAT. The resulting zstat maps were

corrected for multiple comparisons using Gaussian Random Field

theory (Z > 2.3, P < 0.05 corrected). Overall mean iFC-eFC relation-

ships were compared between data sets in a one-way analysis of

variance including data set as factor (P < 0.05).

Finally, we assessed the generalizability of the iFC-eFC relationship

topography by calculating the spatial correlation between the mean

iFC-eFC correlation maps obtained for each data set.

iFC-eFC Relationship versus Noise

We confirmed that the observed iFC-eFC relationships were not driven

by regional differences in temporal signal-to-noise ratio (SNR) or by

differences in SNR between the resting-state and the task scans. To

investigate regional differences in temporal SNR, we calculated the

relationship across voxels between the mean iFC-eFC map (averaged

across participants) and the mean SNR map (averaged across

participants). For the resting-state scan and task-based beta time series

of each participant, we calculated SNR maps by dividing the mean of

the time series by their standard deviation (SD). After z-transforming

the participant-level SNR maps, we created mean SNR maps by

averaging across participants within each sample. To assess the

influence of regional differences in SNR between the resting-state

and the task scans on the iFC-eFC relationship, we performed paired t-

tests comparing for each sample the resting-state SNR maps with the

task-based beta time series SNR maps. Next, we calculated the

relationship across voxels between the obtained t-scores and the mean

iFC-eFC map.

Beyond considering potential relationships between the regional

variation in SNR and the iFC-eFC topography, we also considered

possible relationships between the iFC-eFC topography and the

fractional amplitude of low-frequency fluctuations (fALFF). fALFF is

an index of the temporal dynamics of spontaneous BOLD fMRI activity,

with robust regional variation independent of vascular effects (Zuo, Di

Martino, et al. 2010). Specifically, fALFF expresses the power of the low-

frequency fluctuations (0.01--0.1 Hz) as a proportion of the power of

the total frequency range available in the BOLD signal (Zuo, Di Martino,

et al. 2010). After calculating an fALFF map for each participant’s

resting-state scan, we correlated each sample’s mean fALFF map

(averaged across participants) with that sample’s mean iFC-eFC map

(averaged across participants).
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Results

Significant iFC-eFC correlations were ubiquitous. Regardless of

task, group-level analyses revealed significant iFC-eFC relation-

ships for >96% of voxels (Z > 2.3, P < 0.05 corrected for

multiple comparisons). Overall mean iFC-eFC correlations did

not vary significantly between task data sets but were

significantly lower than the mean iFC-iFC correlations obtained

by comparing the resting-state data sets (P < 0.001; Fig. 1).

Although ubiquitous, the strength of the iFC-eFC relation-

ships varied markedly across the brain. Mean correlations

across participants ranged among –0.01 and 0.54 for the task

data sets (mean: 0.19--0.22; SD: 0.06--0.08) and –0.01 and 0.76

for the iFC-iFC correlations in the resting-state only data sets

(mean: 0.30--0.32; SD: 0.12--0.13). Despite large regional

variation in strength, the topography of iFC-eFC relationships

was remarkably similar across data sets (Fig. 2; between-data set

correlations ranged from 0.76 to 0.95, see Supplementary Table

1). Core regions of the frequently described ‘‘task-positive’’ and

‘‘default’’ networks (Fox et al. 2005; Kelly et al. 2008) exhibited

the strongest iFC-eFC correlations (Supplementary Fig. 2). In

contrast, subcortical, limbic, and primary sensory motor areas

exhibited more variable patterns of functional interactions

across task-active and resting states (see hierarchical charac-

terization in Supplementary Figs 3 and 4). Figure 3 illustrates

iFC and eFC maps in a single participant for regions showing

respectively weak and strong iFC-eFC relationships. While

overall mean iFC-eFC correlation strength did not differ

between data sets, we did observe a limited number of local

voxelwise differences in iFC-eFC correlation strength. This

result indicates that the specific requirements of each task

influenced the strength of the iFC-eFC relationship for specific

voxels (Supplementary Fig. 5).

In the Flanker and Simon data set, the topography obtained

using all trials was preserved when eFC calculations were

limited to either congruent or incongruent trials (Fig. 4).

However, in contrast to our findings for the ‘‘broader’’ task

contrasts (i.e., congruent + incongruent > baseline), mean iFC-

eFC relationships for tight task contrasts (i.e., incongruent >

congruent) were weak (range: –0.1 to 0.1) and did not show

a distinct topography (Fig. 4).

When considering our results, one concern is that our

findings might merely reflect regional or paradigm-related

variation in SNR. Voxelwise correlations between the resting-

state scan SNR maps and the mean iFC-eFC maps were

moderate, ranging between 0.21 and 0.27 depending on the

participant sample (see Supplementary Fig. 6 and Supplementary

Table 3). SNR maps obtained for the beta value time series used

to obtain the eFC maps did not correlate with the mean iFC-eFC

maps (correlations ranged between –0.04 and 0.06 depending on

the task paradigm and task condition). In addition, we confirmed

that lower task-based SNR values were not contributing to weak

iFC-eFC relationships as we observed moderate correlations

between the mean iFC-eFC maps and the t-score maps indexing

differences between the resting-state and the task-based SNR

maps (range: 0.16--0.25). Regions exhibiting higher SNR values

for the resting-state scan also exhibited stronger iFC-eFC

relationships, while regions exhibiting higher SNR values for

the task-based time series exhibited weaker iFC-eFC relation-

ships. In contrast to the SNR results, we observed strong

correlations between the iFC-eFC topography and the regional

variation in fALFF, an index of the relative strength of low-

frequency fluctuations in the fMRI BOLD signal (see

Supplementary Fig. 6). Correlations ranged between 0.58 and

0.66 depending on the participant sample. These results suggest

that regional differences in the temporal dynamics of the low-

frequency fluctuations, which a recent arterior spin labeling-

based study linked to brain metabolism (Zou et al. 2009), appear

to better account for regional variation in the strength of the

iFC-eFC relationship compared to simple metrics of signal/noise.

A second concern is that our analyses could have been

biased toward the detection of stronger iFC-eFC relationships

for voxels within larger networks. For example, a voxel in

posterior cingulate cortex is significantly correlated with

a larger number of other voxels (the widespread default

network) than a voxel in motor cortex with a more circum-

scribed pattern of iFC. However, we obtained practically

identical results when spatial iFC-eFC overlap was assessed

Figure 1. Distribution and overall mean of iFC-eFC correlations observed for each
data set. (a) iFC-eFC correlation for each voxel in each data set sorted from weakest
to strongest. (b) Mean iFC-eFC correlation across voxels for each data set. A one-way
analysis of variance including data set as factor indicated that the overall mean iFC-
eFC correlations did not vary significantly between task data sets but were
significantly lower than the mean iFC-iFC correlations obtained for the resting-state
data sets (**P \ 0.001). TRT: resting-state Test--ReTest data set.
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using the Dice coefficient (see Supplementary Methods),

suggesting that network size is unlikely to explain regional

differences in iFC-eFC correspondence (Supplementary Fig. 7).

Finally, although global signal regression is commonly

performed during processing of resting-state fMRI data, its

use and implications are much debated (Murphy et al. 2009;

Anderson et al. 2011; He and Liu 2012). Accordingly, we

examined whether the iFC-eFC topography was independent

of global signal regression applied to the resting-state scan (it

was not applied to the task scans). Supplementary Figure 8

shows that the iFC-eFC topography and hierarchy remained

intact when global signal regression was omitted.

Discussion

Our results show that the brain’s intrinsic functional architec-

ture does not provide a complete representation of its

repertoire of extrinsic responses. In particular, for subcortical

and limbic areas as well as for primary sensory and motor

cortices, we observed weak correspondence between func-

tional interactions embedded in patterns of correlated intrinsic

activity and patterns of task-evoked coactivation. In contrast,

multimodal association areas in the default and task-positive

networks exhibited consistent patterns of interactions across

their intrinsic and extrinsic functional architectures.

This pattern of results was observed across tasks probing

a variety of cognitive functions: cognitive control, stimulus

response mapping, decision-making, and feedback processing.

As such, our results suggest a generalized topography in the

strength of the relationship between the brain’s intrinsic and

the extrinsic functional architectures. This conclusion must

remain tentative, however, until our findings are replicated

across other task domains, such as social cognitive and affective

processing, task switching, or error monitoring. Beyond the

limited number of cognitive functions, sample sizes in the

present study were relatively moderate (smallest n = 21), with

Figure 2. Surface topography showing the mean voxelwise iFC-eFC correlations obtained for each data set. All surface maps are scaled identically (r 5 0--0.4). As is clear from
the surface maps, the iFC-eFC topography generalized across data sets. Between-data set correlations ranged from 0.76 to 0.95 and are illustrated in the correlation matrix. See
Figure 3 for single participant iFC and eFC maps obtained for 2 regions showing respectively weak and strong iFC-eFC correlations.

Figure 3. Illustration of weak versus strong iFC-eFC correlations in a single
participant. For a participant from the Simon data set, we calculated iFC and eFC
maps for a seed region in supplementary motor cortex (top) and posterior cingulate
cortex (bottom). These seed regions exhibited respectively weak and strong iFC-eFC
correlations. Of note, for illustration purposes, we used seed regions of interest (ROIs)
comprising 33 voxels for calculating the iFC and eFC maps shown in this figure, all
other analyses were done for each voxel individually.
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partial overlap in participants across tasks. This limitation may

have weakened our ability to detect relationships between the

brain’s intrinsic architecture and the measures of eFC derived

from tight comparisons (e.g., incongruent vs. congruent).

Strongly related to the topography of fALFF, an index of BOLD

signal dynamics (Zou et al. 2009), our observations on iFC-eFC

relationships derived from broad task contrasts (e.g., incongru-

ent + congruent vs. baseline) spark 2 important questions: 1)

How does the brain establish and maintain veridical intrinsic

representations of certain patterns of evoked interactions? 2)

Why are patterns of evoked functional interaction for subcortical

and limbic areas as well as primary sensory and motor cortices

not accurately represented in the brain’s intrinsic architecture?

Structural connections between regions are obvious con-

tributors to establishing and maintaining the intrinsic connec-

tivity networks that represent task-evoked patterns of

coactivation (Honey et al. 2007). However, structural con-

nections and patterns of functional connectivity do not exhibit

a 1:1 relationship. Instead, it is hypothesized that intrinsic

functional networks are sculpted by repeated evoked coac-

tivation of regions (Kenet et al. 2003; Foster and Wilson 2006;

Fox and Raichle 2007; Deco and Corbetta 2011; Deco et al.

2011) and thus extend beyond existing structural connections.

Consistent with this hypothesis, it has been repeatedly

observed that the regions that constitute the task-positive and

default intrinsic networks are jointly activated or deactivated,

respectively, during task performance (Gusnard et al. 2001;

Fox et al. 2005; Sridharan et al. 2008). Indeed, we found that

these regions showed the strongest relationship between

their intrinsic and extrinsic functional architectures. In

addition, it is of interest that the topography of the strongest

iFC-eFC relationships closely parallels the distribution of

regions exhibiting elevated resting levels of aerobic glycolysis

(Vaishnavi et al. 2010), which is thought to index metabolic

processes beyond basal levels, including learning- or activity-

related biosynthesis (Vaishnavi et al. 2010; Vlassenko et al.

2010). Furthermore, we found that regions exhibiting strong

similarity between their intrinsic and extrinsic functional

architecture also exhibited high fALFF. Given the relationship

between amplitude of low-frequency fluctuations and cerebral

blood flow at rest (Zou et al. 2009), this finding is also

consistent with our observation that iFC-eFC topography

paralleled the topography of the brain’s resting metabolism.

As such, our data suggest that the brain invests considerable

resources into maintaining a veridical intrinsic representation

of certain patterns of evoked interactions.

Our results indicate that the brain does not maintain accurate

intrinsic representations of patterns of evoked functional

interaction for subcortical and limbic areas. One possible

explanation is that the functional interactions of these regions

are more variable, accommodating specific task demands by

flexibly interacting with demand-specific regions for short

periods of time (Deco et al. 2011). This hypothesis is consistent

with models of basal ganglia and thalamic anatomical connec-

tivity that emphasize parallel but integrated cognitive, emotional,

and motor circuits supporting flexible adaptation to internal and

external demands (Alexander et al. 1990; Haber 2003).

In task-based fMRI studies, subcortical networks have been

shown to adaptively accommodate different stages of learning

new motor sequences (Doyon and Benali 2005; Bapi et al. 2006;

Tunik et al. 2007), and striatal structures are thought to

influence visual-oculomotor decisions by constantly updating

higher order regions with the latest sensory information (Ding

and Gold 2010). Furthermore, subcortical networks associated

Figure 4. The topography of iFC-eFC correlations calculated using eFC based on the individual trial types (congruent or incongruent) in the Flanker and Simon task was similar to
the iFC-eFC topography obtained when calculating eFC based on all trials (Overall 5 congruent þ incongruent [ baseline). However, when iFC-eFC correlations were calculated
using eFC based on the ‘‘tight’’ incongruent [ congruent contrast (Incon [ Con), mean iFC-eFC correlations were low and yielded no specific spatial topography. See
Supplementary Table 2 for between-data set correlations.
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with ‘‘hub’’ regions such as the thalamus and cerebellum

exhibit a larger number of short-range functional connections

and greater overlap with one another compared with cortical

networks such as the default network (Tomasi and Volkow

2011). Finally, subcortical and paralimbic iFC exhibits strong

developmental effects. While subcortical iFC decreases signif-

icantly from childhood to adulthood, paralimbic iFC increases

significantly (Supekar et al. 2009).

Together, these characteristics may confer less stability (or

greater flexibility) on patterns of subcortical interactions,

thereby decreasing the extent to which their evoked functional

interactions are represented in the intrinsic brain. This

speculation is consistent with the observation that test--retest

reliability for striatal and cerebellar intrinsic connectivity

networks ranked among the lowest in the brain and was

markedly lower than that of the default and task-positive

networks (Zuo, Kelly, et al. 2010).

Studying the iFC-eFC topography in Figure 2 reveals that

regions in the so-called ‘‘sensorimotor strip’’ as well as primary

visual cortical areas (V1, V2) also exhibited relatively weak

correspondence between their intrinsic and extrinsic functional

interactions. This observation is not immediately evident in the

hierarchy plots in Supplementary Figure 4, which is likely due to

the coarse nature of the anatomical parcellation employed for

the hierarchical classification. The lack of intrinsic representa-

tions in these areas might be explained by the idea that

sensorimotor regions exhibit strong local iFC but weak iFC with

the rest of the brain (i.e., they are more globally isolated; Power

et al. 2011). As such, their communications with the rest of the

brain may be less predetermined and more influenced by factors,

such as attentional state or arousal. In addition, we observed low

Dice coefficients for the primary sensorimotor areas indicating

limited spatial overlap between their iFC and eFC networks. This

finding suggests that the local and homotopic interactions of

these areas are modulated as well. For instance, in the primary

sensory and motor cortices, Power et al. (2011) distinguished

a ventral network involved in processes related to facial

sensations and a dorsal network related to sensory processing

for the rest of the body (Power et al. 2011). Interactions among

such subnetworks during task performance may be dependent

on stimulus properties and/or task demands (Tunik et al. 2007).

Our conclusions regarding regional variation in iFC-eFC

relationships must be considered in the context of broad task

contrasts (e.g., congruent + incongruent vs. baseline). When

evoked coactivation patterns for tight task contrasts (e.g.,

incongruent vs. congruent trials) were examined, we found no

relationship with the brain’s intrinsic architecture. Consistent

with demonstrations in the task-based literature, this result

suggests that high-level task or stimulus demands are accom-

modated by context-specific modulations of functional inter-

actions. For example, unilateral task-evoked activations can be

observed in functional networks containing bilateral regions

(e.g., unilateral evoked motor activity, while the intrinsic motor

network is bilateral), and voxels in regions activated by

multiple demands exhibit a specific task preference (Haynes

et al. 2007; Stiers et al. 2010). This phenomenon is capitalized

on by studies applying multivoxel pattern analysis (e.g., Kahnt

et al. 2011), which demonstrate that task demands can be

decoded from context-specific patterns of evoked activity.

It is worth noting that, although considerably weaker than

the relationship with fALFF, the iFC-eFC topography was

moderately related to the topography of SNR values derived

from the resting-state scan. The fact that both fALFF and

resting-state SNR were related to the iFC-eFC topography is not

surprising given the properties of SNR and fALFF. While SNR is

calculated as the temporal mean divided by the temporal SD of

the resting-state time series, ALFF is equivalent to the temporal

SD of the resting-state time series, restricted to the lower

frequency bands (Zuo, Di Martino, et al. 2010). In turn, fALFF

expresses ALFF as a fraction of the power across all frequencies

present in the resting-state BOLD signal. As such, these

measures are mathematically related (positively correlated),

which likely explains their common relationship with the iFC-

eFC topography. However, the fact that fALFF is a more specific

measure of low-frequency oscillatory phenomena (Zuo, Di

Martino, et al. 2010) than resting-state SNR might explain its

stronger relationship with the iFC-eFC topography relative to

that of the resting-state SNR values. Interestingly, we observed

no relationship between the iFC-eFC topography and the SNR

values derived from the task-evoked beta value time series. In

contrast to the ongoing signal fluctuations recorded during the

resting-state scan, the beta value time series reflect trial-related

activity. As such, the lack of a relationship between the task-

evoked SNR values and the iFC-eFC topography could be

attributed to the spatial distribution of the task-evoked SNR

values. Their distribution matches the spatial distribution of

task activations rather than large-scale network definitions or

the intrinsic topography. In addition, it is important to note

that variability in task-evoked responses across trials is more

likely governed by state-related factors (e.g., level of attention,

error-related activity, impact of one trial on the next) than by

inherent trait factors that exhibit less variability over time.

In conclusion, we have provided a detailed topography of

the correspondence between task-evoked interaction patterns

associated with broad task contrasts and the brain’s intrinsic

functional architecture. While strong correspondence was

demonstrated for default mode and task-positive regions, weak

correspondence was demonstrated for subcortical and limbic

regions, as well as for primary sensory and motor cortices. In

addition, we observed that evoked interaction patterns for tight

task contrasts did not relate to the brain’s intrinsic architecture.

Accordingly, we conclude that intrinsic approaches provide

only a partial understanding of the brain’s functional architec-

ture. Appreciating the full repertoire of dynamic neural

responses will continue to require task-based approaches.

Supplementary Material

Supplementary material can be found at: http://www.cercor.

oxfordjournals.org/
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