
The visual cortex of the macaque monkey is divided into many
distinct visual information processing areas. In many cases,
anatomical and physiological results allow one to determine the
presence or the absence of neuronal connections from one area to
another. We have approached the topology of this neuronal network
within the mathematical framework of graph theory. At first, we
studied  the unknown part of the  network,  i.e. the part where
anatomical and physiological results are lacking. Relying on a
specific topological property of the network established on the
known part, we developed an interpolation algorithm for reducing
the level of uncertainty concerning the unknown part. From these
results, we then constructed a connectional model of the neuronal
network for the entire cortical visual system. Subsequently, a
topological analysis of this model, with the help of factorial analysis
and clustering technics, shows its structural properties and singular
vertices. This analysis suggests the existence of two distinct
classes of areas, one in the parietal part of the cortex and the other
in the temporal part, which are connected to each other via relay
areas, especially involving the frontal eye field. These results may
help to understand the functional role of particular cortical areas in
vision and, more generally, to explore how visual information flows
within the visual cortex.

1. Introduction

1.1 Graph Theory and Factorial Analysis: A Rigorous

Framework

Visual information processing is performed within many distinct

areas of the cerebral cortex of the macaque monkey. These areas

are connected in a network of neurons transmitting signals

specific to each processed attribute. The network can be

symbolized by an oriented graph. Our aim is to reveal topological

properties of this graph that may help understand the role of

some cortical visual areas in vision and, more generally, how

visual information f lows within the cerebral cortex. About 32

visual areas have been identified on the basis of anatomical and

physiological experiments (Felleman and Van Essen, 1991). In

section 1.2 we list the references that have been used to

construct the matrix of the network’s connections. Roughly a

quarter of the network still remains unknown. In this paper we

first try to reduce this uncertainty. We describe a specific

topological property, called P, derived from the known part of

the visual network that is then extended to the entire network

for making predictions (2.2.3: algorithm). This provides a

topological model G1 of the cortical visual system. In section 3

we   use two competing methods, factorial   analysis and

clustering, to analyze the topology of this model. The main idea

of these methods is that local computations on a graph can reveal

its global structure. The local computation selected here is a

measure of local connectivity represented by an Euclidean

distance d on the set of vertices of the graph. The inf luence on

the global structure of the graph is revealed by studying the

representation, in a multidimensional Euclidean space, of an

isometric embedding (see section 3 and appendix 3 for math-

ematical details) of the graph with respect to the distance d. The

crossing over from local to global is made using factorial analysis

or clustering methods. This study extends to oriented graphs the

methods of a previous work (Kuntz, 1992) on non-oriented

graphs, which analyzed the connections of aircraft electrical

systems.

All the algorithms used in this paper were written in the C

language on an i486 running under OS2.

To lighten the paper, all the notations and basic definitions

proper to graph theory or factorial analysis have been put in

appendices (appendices 1 and 3). The reader should refer to

these for mathematical details.

1.2 Experimental Data and Anatomical Connection

Network

We shall suppose the visual cortex of the macaque monkey to be

divided into 32 different areas. Four types of criteria are

generally used to identify them: connectivity criteria, as revealed

by retrograde and/or anterograde tracers; structural criteria,

revealed by histological staining techniques (Nissl, myelin,

cytochrome oxidase, neurofilament protein) (Hof and Morrison,

1995; Tootell and Taylor, 1995); topographic criteria, derived

from receptive field mapping; and physiological criteria based

on response selectivity.

The various visual areas are principally connected by the

axons of neurons running through the white matter. While the

pattern of connections has been extensively studied by many

laboratories, it is at present still incompletely understood. Our

work is based on a matrix of connections between visual areas,

derived from the work of Felleman and Van Essen (1991). This

matrix is a square binary matrix. The value at the intersection of

row i and column j indicates the existence (1) or the absence (0)

of a projection from area i to area j. Although Felleman and Van

Essen introduced large + symbol and minor + symbol in their

connectivity table so as not to give the same credence to every

connection, working with binary matrix prevents us from such

distinctions. So, we  make  no difference  between  a large +

symbol and a minor + symbol, and both of these connections are

given a value equal to 1. In the same table, a value of (0) is given

to dots corresponding to non-connections (connections tested

and found absent). We neglect any asymmetry in the chance of

false (0) versus false (1), because these are difficult to estimate

and probably vary considerably even if false (0) are much less

likely than false (1) if one considers anatomical methodology.

Then, following Young (1992), we assign connections from or to

PIT, CIT and STP respectively from or to PITd and PITv, CITd and

CITv, and STPp and STPa. We do not include areas MIP and MDP

in the matrix because of lack of connection data.

Following results from other authors, we include some
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additional connections to those listed by Felleman and Van

Essen. These connections are from MT to 46 (Barbas, 1988),

from MT to PO (Colby et al., 1988), from CITd, CITv and 7a to

FST (Boussaoud et al., 1990), from V4, CITv, AITv, TF, TH, LIP

and FEF to VOT, from FST, PITd and FEF to PITv, from VOT to

FST, CITv, AITv, TF and LIP, from PITv to FST, PITd, TF, LIP, FEF

and 46 (Distler, 1993).

Also, we posit as non-existent some connections considered

as unknown by Felleman and Van Essen: from STPp, STPa, MSTd

and MSTl to VOT and PITv, from VOT and PITv to STPp, STPa, TH

and MSTd, from VOT to MSTl (Distler, 1993).

Finally, recent results (Distler, 1993) go against the data

revealed by Felleman and Van Essen and assign non-connections

between VOT and TEO (including here areas VOT and PITv).

Therefore, we consider the connections between these areas as

unknown.

The matrix of connections we arrive at is a 30 × 30 matrix

with 324 known connections, 323 known non-connections and

223 unknown pairs. We call unknown pair an oriented pair (i,j)

of areas i and j for which we do not know if there exists or not a

direct projection from i to j.

2. A Model of the Visual System
Throughout this presentation G∞ ={V∞,E∞} will represent the

graph of the visual system of the macaque monkey, where V∞ is

the set of the 30 visual cortex areas and E∞ is the set of the

connections between visual cortical areas. The set E∞ is not fully

known but it includes the 324 connections of the matrix of

connections revealed by physiological and anatomical experi-

ments. In order to allow a topological study of the graph G∞,

we looked for a method reducing the uncertainty about

the unknown pairs. In the following, we denote G0 =

{V∞,E0,N0,U} the graph where E0 is the set of the 324 known

connections of the visual system, N0 the set of the 323 known

non-connections, and U the set of the 223 unknown pairs. In

other words, G0 represents what we know about G∞ (Table 1).

Thus, G∞ is a supergraph of the graph G0 (see Appendix 1 for

definitions). From the graph G0, we will construct a graph G1,

supergraph of G0 and without unknown pairs, approaching

G∞ in  the  way  that  the  number of  pairs that  are different

between G1 and G∞ has good reasons to be low. Notice that all

the graphs in this paper are oriented graphs.

2.1 An Index of Connectivity

Definition 1 Given two vertices i and j of a graph, we call

indirect connection from i to j a walk of length 2 from i to j, i.e.

a sequence of vertices i, k, j where (i,k) and (k,j) are two arcs

of the graph.

In the following we shall be strongly concerned by a positive

correlation between the existence of the connection (i,j) and the

existence of indirect connections from i to j.

Definition 2 Given a graph G and its adjacency matrix A(G)

= (aij), for each ordered pair of vertices (i,j), with i ≠ j, we define

the index of connectivity c by:

Table 1
Adjacency matrix of G1, model of the connection network of the visual system

G1 to
from

V1 V2 V3 VP V3A MT MST
d

MST
l

PO PIP LIP VIP V4 VOT V4
t

FST DP 7a FEF PIT
d

PIT
v

CIT
d

CIT
v

AIT
d

AIT
v

STP
p

STP
a

TF TH 46 No. of
successors

No. of
predecessors

V1 1 1 1 0 1 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 8
V2 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 15 16
V3 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1* 0 1 0 0 0 0 0 0 0 0 1 0 0 17 16
VP 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1* 0 1 0 0 0 0 0 0 0 0 1 0 0 15 14
V3A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 17 17
MT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1* 17 16
MST d 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1* 0 0 0 0 0 1 1* 1 1* 1* 21 17
MST l 0 1 0 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1* 0 1* 1* 16 14
PO 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 15 16
PIP 1 1 1 1 1 1 1 1* 1 1 1 1 1 1 1 1* 1 1* 1 0 0 0 0 0 0 0 0 1* 0 1* 20 15
LIP 0 1* 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1* 20 18
VIP 0 1 1 1 1 1 1 1 1 1 1 1 1* 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1* 0 1* 19 16
V4 1 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 0 0 1 1 1* 21 21
VOT 0 1 1 1 1 1 0 0 1* 1 1 1 1 1 1 1 1* 0 1 1 1 1 1 0 1 0 0 1 0 1 21 21
V4 t 1* 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 27 27
FST 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 1 1* 1 1 0 20 23
DP 0 0 0 0 1 0 1 1 1 1 1 1 1 0 1 1* 1 1 1 0 0 0 0 0 0 0 0 0 0 1 13 25
7a 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 1 1 1 1 0 0 0 0 1 0 1 1 1 1 1 15 16
FEF 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 28 28
PIT d 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1* 0 1 1 1 1 1 1 1 1 1 1 1 1 16 16
PIT v 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1* 0 1 1 1 1 1 1 1 0 0 1 0 1 14 14
CIT d 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1* 1* 0 1 1 1 1 1 1 1 1 1 1 1 1 16 14
CIT v 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1* 1* 0 1 1 1 1 1 1 1 1 1 1 1 1 16 14
AIT d 0 0 0 0 0 0 0 0 0 0 0 0 0 1* 1* 0 1* 1 1 1 1 1 1 1 1 1* 1 1 1 1 15 11
AIT v 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1* 0 1 1 1 1 1 1 1 1 0 1 1 1 14 13
STP p 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1* 1 1 1 0 1 1 0 1 1 1 1 1 1 15 15
STP a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1* 1 1 1 0 1 1 1 0 1 1 1 1 1 12 14
TF 0 0 1 1 0 0 1 0 0 0 1 0 1 1 1 1 1* 1 1 1 1 1 1 1 1 1 1 1 1 1 21 22
TH 0 0 0 0 0 0 0 0 0 0 0 0 1 1* 1 1 1* 1 1 1 1* 1 1 1 1 1 1 1 1 1 17 16
46 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 22

Normal type corresponds to known pairs (connections revealed as existing or absent by previous published anatomical or physiological experiments), whereas the 223 entries in bold type correspond to
predicted values of unknown pairs. Asterisks indicate non-reciprocal connections.
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The index c(i,j) is high if and only if there are many successors

of i among the predecessors of j and many predecessors of j

among the successors of i. More precisely, it is equal to twice the

number of indirect connections divided by the total number of

arcs incident from the vertex i plus the total number of arcs

incident to the vertex j. It gets its values from the interval [0;1]

and quantifies what we call in the following: a proportion of

indirect connections from the vertex i to the vertex j. In Figure

1, we calculate c on some examples. It is clear that generally

c(i,j) ≠ c(j,i).

A Distribution Property of the Connections Between the

Cortical Visual Areas

Analysis of the Known Pairs

Among the known pairs, we notice that a connection (i,j) is

nearly always accompanied by many indirect connections (cf.

definition 1) from i to j, and a non-connection by very few

indirect connections. So we have analyzed the distribution of the

values of the index c (cf. definition 2) over the set of the known

pairs of the graph G0, looking for the threshold values ε of c such

that a high percentage of connections has a value of c above ε
and a high percentage of non-connections has a value of c below

ε. For that sake, we define two functions α and β of c that, in

statistical terms, are cumulative increasing frequencies of the

index c on the set of the connections and non-connections.

Definition 3 Given a graph G and a parameter τ ∈ [0;1], we

denote α(τ) the percentage of connections (i,j) of G such that

c(i,j) < τ, and β(τ) the percentage of non-connections (i,j) of G

such that c(i,j) ≤ τ.

We are interested in a value of τ for which |β(τ) – α(τ)| is

maximum. Thus, we also define the threshold ε of a graph as:

Definition 4 Given a graph G, we define the connectivity

threshold ε of G to be the largest value of τ for which |β(τ) –

α(τ)| is maximum.

For the graph G0, ε0 = 0.41 is such a threshold with α(ε0) = 7%

and β(ε0) = 87% (Fig. 2). In other words, 93% of the connections

are between areas whose value c(i,j) is above 0.41, and 87% of

the non-connections are between areas whose value c(i,j) is

below 0.41 [notice that we gave the value (0) in A(G0) to each

unknown pair]. Most of the connections link vertices between

which there is a high proportion of indirect connections,

whereas most of the non-connections correspond to pairs with a

low proportion of indirect connections. This property, which

we shall denote P, dictates how areas connect to each other. The

following definition is a modeling of it.

Definition 5 Given a graph G = {V,E,N,U} and its connectivity

threshold ε, we say that:

• a known pair (i,j) has the property P if and only if c(i,j) ≥ ε
for a connection (i,j) and c(i,j) ≤ ε for a non-connection (i,j).

• the graph G has the property P if >90% of its known pairs

(i,j) have the property P.

This definition means that a graph has the property P if

the index of connectivity c (cf. definition 2) separates the
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Figure 1. Example of some calculations of the index of connectivity c for the arc (i,j).

Figure 2. Distribution of the values of the index of connectivity c between the areas of
the visual system for the known pairs. The bold curve is the graph of the α function, and
the other curve represents the β function. These functions are cumulative increasing
frequencies of the index of connectivity c on the set of the 324 known connections and
the set of the 323 known non-connections (see definition 3 for more details). The
threshold 0.41 of the index of connectivity c is the highest value of c for which the
distance between the two curves is maximum. It separates the connections from the
non-connections with an error of 10%.
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connections from the non-connections with an error of <10%;

the error being the percentage of known pairs that do not have

the property P.

2.2.2 Conjecture

The graph G0 has the property P (cf. section 2.2.1) and two

strong arguments encourage us to extend this property P to the

whole graph G∞. Firstly, the sample set of the known pairs of

the graph G∞ is large enough (75% of the graph ). Secondly, the

iteration of the property P is a Hebb rule (Hebb, 1949), which

figures prominently in models of visual system development

(Madison et al.,   1991).   Hence, we make the following

conjecture:

Conjecture G∞ has the property P.

As the graph G0 has 223 unknown pairs and 324 connections,

the percentage of connections of G∞ may vary from 37 to 62%.

Among all the supergraphs of G0, very few satisfy the property

P; we checked this fact by a Monte-Carlo method using 50

random supergraphs of G0 with a density varying from 37 to

62%: none of them appears to have the property P. This property

seems to be a good control property for the search of G1, the

graph approaching G∞.

2.2.3 Reduction of Uncertainty for the Unknown Pairs:

Selection of a Model

Presentation of the Interpolation Algorithm. Given a graph G

that is not entirely known, which has the property P, and given

its threshold ε, the algorithm of the interpolation of the

unknowns uses the following rule:

i is adjacent to j if and only if c(i,j) is below the threshold ε

It signifies that to decide if an unknown pair is a connection

or a non-connection, we just have to look at the proportion of

indirect connections quantified by the index of connectivity c.

Roughly, if the proportion is high, it is a connection, and

conversely, if the proportion is low, it is a non-connection. Let G0

be a graph with N unknown pairs. Firstly we construct a graph

which is a supergraph of G0 where the N unknown pairs are

randomly given the value (0) or (1) for the initialization of the

computing. Then, we construct a series of graphs ( ) in the

following way:

• Let us suppose that the graph is constructed, and denote

by its threshold. We point to the unknown pair of

which value |c(i,j) – | is the largest, this pair loses its

status as an unknown pair and is assigned a value (0) or (1)

according to its position with regard to the threshold. In that

way, we reach the new graph , and in the event of p

unknown pairs simultaneously maximize the value |c(i,j) –

| we directly reach graph .

• The process stops when there are no more unknown pairs,

thus defining a graph .

We make M = 100 iterations. The number of (1) randomly

given to the unknowns varies from 0 to N throughout the M

iterations. These M tests therefore provide M graphs . We

choose the test, and the corresponding graph , with

~G0

~Gk

~Gk

~εk
~Gk

~εk

~Gk+1

~εk
~Gk p+

~GN

~GN

~ ~G GN=

Table 2
Mean values of the 223 computed pairs over 50 graphs G provided by the interpolation algorithm from G0

to
from

V1 V2 V3 VP V3A MT MST
d

MST
l

PO PIP LIP VIP V4 VOT V4
t

FST DP 7a FEF PIT
d

PIT
v

CIT
d

CIT
v

AIT
d

AIT
v

STP
p

STP
a

TF TH 46

V1 6*
V2 88
V3 100* 84 63 90 0*
VP 100* 61 94*
V3A 100* 100* 100* 71 94* 90
MT 73
MST d 100* 76 69 86 51 94*
MST l 100* 90 96* 90 100* 76 22 55 88
PO 98* 94* 73 100* 92* 49 69* 67 33
PIP 100* 100* 100* 100* 100* 100* 82 96* 100* 98* 76 0* 69
LIP 100* 92* 100* 20 10
VIP 98* 94* 98* 86 90 78 96* 96* 37 43 80 43 88
V4 100*
VOT 86 71 71 55 67 65 90 82 31 98* 51 43 92*
V4 t 94* 100* 100* 71 100* 92* 82 96* 92* 92* 67 63 57 61 49 55 69 69 78 63 86
FST 98* 96* 61 57
DP 100* 41 84 78
7a 98* 0* 67 39 90 6*
FEF 73 80 69 88 78 57 96* 98* 98* 80 84 100* 84
PIT d 0* 82 78 98* 82 71 199* 84
PIT v 2* 100* 80 78 92* 94*
CIT d 98* 80 80 100* 100* 84 80 100* 90
CIT v 82 82 100* 98* 84 78 100* 92*
AIT d 67 67 82 92* 98* 96* 96* 86 98* 94*
AIT v 69 84 14 86 100* 96* 98* 59 98*
STP p 88 86 96* 69
STP a 4* 6* 53 33 63 65 84 90 92*
TF 2* 96* 90 96* 100* 100* 96* 98*
TH 86 100* 88 100* 100* 100*
46 0* 8* 0* 0* 8* 0* 47 67 82 90 96* 94*

These percentages may be understood as an index of reliability of the computed pairs. The 106 asterisked entries correspond to the most probable interpolations (values below 10% or over 90%).

~ ~G GN=
~ ~G GN=G
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maximum. is a supergraph of

the graph G0 with no unknown pairs. By construction, the graph

has the property P.

Convergence of the Algorithm and Selection of the Model.

We test the convergence of the algorithm by computing 50

supergraphs of the graph G0, and comparing them arc by arc.

The graphs differ, on average, in 48 edges on 870 possible

(5.5%), with a standard error of 13. If the values of the unknown

pairs had been chosen at random, two graphs would differ, on

average, in 112 connections (13%) (cf. Appendix 2). So, if our

conjecture is valid, the number of possible topological models

for the visual system is divided by more than two. Moreover, 106

unknown pairs (Table 2) take the same value (0) or (1) in >90%

of the graphs . This suggests that their probability of

belonging to G∞ is very high. Thus, they are good candidates for

anatomical or physiological testing. Finally, we construct the

graph G1 as the mean of the 50 computed supergraphs in

the sense that a pair of G1 is an arc if and only if it is an arc in at

least half of the graphs . We consider that G1 is an

approximation of G∞. G1 has a density of 59% (515 connections

and 355 non-connections); it contains the 647 known pairs (i,j)

of G0 plus 223 computed pairs. The threshold ε1 of G1 is equal to

0.60, α(ε1) to 5%, and β(ε1) to 92%.

Quality of the Algorithm. For testing the quality of inter-

polation of the algorithm, we verify its capacity for recovering

supergraphs of G0 with no unknown pairs, with property P,

from which we deleted at random, on average, 220 pairs. We

computed the algorithm on such 231 graphs, and among the

deleted pairs the proportion of connections varies uniformly

from 1 to 97%. The algorithm restores, on average, 84% of the

deleted pairs. The 16% of erroneous pairs are partly explained by

the fact that the threshold ε separates the connections from the

non-connections with an error of ∼10%.

Because the graph G1 has more connections than non-

connections, we have verified that the algorithm does not

overestimate the connections. For the 231 previous graphs, we

have analyzed the percentage of connections among the

computed pairs as a function of the percentage of connections

among the deleted pairs (Fig. 3). The relation between these two

percentages is statistically significant (r2 = 0.93, P = 0.001) and

the results reveal a low overestimation when the percentage of

deleted connections is below  46%,  and, in contrast,  a  low

underestimation otherwise.

In short, if we consider that the graph of the visual system has

the property P, we have constructed an approximation G1 of it.

This model has a predictive value on the unknown pairs of G0.

Nearly half of these predictions seems to be very probable.

3. Topological Analysis of the Model G1
We use two competing methods for studying the topology of the

graph G1: factorial analysis and vertex clustering. Both use a

representation of the graph in a multidimensionnal space, called

an ‘embedding’ of the graph. In an embedding, the vertices of

the graph are not arbitrarily positioned into the space, but

positioned so that any two of them, named i and j, are at a given

distance d(i;j). The given distance d is Euclidean and the

dimension of the space is at most equal to the number of vertices

of the graph minus one. In this way, the local distance d acts on

the global form of the cloud of points. Then, depending on the

choice of the distance, some particular topological subsets of the

graph may be revealed. In our case, we are interested in

subgraphs like dense subgraphs, subgraphs with a very low

density, or subgraphs without circuits, which may be inter-

preted in terms of functionality within the visual system. To that

end, and guided by a previous study of Kuntz (1992), we have

chosen a distance d between the vertices of the graph G1 such

that two vertices are close together if and only if they have many

common predecessors and few different ones, and many com-

mon successors and few different ones (cf. Appendix 3 for

mathematical details) (Fig. 4). This distance d ref lects the

difference in the local connectivity of two vertices. It gives good

results with both the following methods of topological analysis.

3.1 Factorial Representation of G1

We realize an embedding of G1 with respect to d, previously

defined and detailed in Appendix 3, in the space R29. This

representation is denoted by Id(G1). Note that this distance d is

β ε α ε β ε α ε~ ~ ~ ~
0 0d i d i d i d i− + −N N

~G

~G

~G
~G

~G

~G

~G

~G

~G

~G

Figure 3. To test our interpolation algorithm, a mean of 220 pairs have been deleted in
231 different graphs with 30 vertices which have the property P. We have used our
algorithm to try to recover these deleted pairs. In order to verify that our algorithm does
not overestimate the connections, we have plotted the percentage of connections
among the computed pairs as a function of the percentage of connections among the
deleted pairs.

Figure 4. Comparison of model DV and area 5 phasic activity during a control task (a)
and a priming task (b), where the target is shown before the ‘go’ stimulus is given. The
times of the target presentation and the ‘go’ stimulus are shown as a vertical dashed
line. This simulation used the same parameters as that of Figure 3. Rasters reprinted
from Crammond and Kalaska (1989).

~G
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not supposed to quantify some neurobiological strength of the

connection between two cortical areas. The high dimensionality

of the space containing Id(G) does not allow us to have a general

idea of the global structure of the graph. Factorial analysis allows

us to find and study the axes, called factorial axes, around which

the cloud [vertices of Id(G1)] is organized (see Appendix 3 for

details). Generally, the projection of the cloud into the space

generated by the first axes allows a large part of the inertia (also

called variance in probabilistic terms) to be kept and gives a

good idea of the global structure of the graph. In our case, the

factorial analysis of Id(G1) provides a satisfactory representation

in R3, the space generated by the three first factorial axes. The

inertia of the projection of Id(G1) onto this space is of 72%.

3.1.1 The Three Classes of G1

The factorial analysis of G1 reveals a first factor which is very

important compared with the others, since it represents τ1 = 52%

of the total inertia of the cloud. Even if the interpretation of the

different projections of Id(G1) generally requires knowledge of

the biological significance of the different factors, such a first

important factor often ref lects a structure of the cloud of points

in different clusters (Bastin et al., 1980). The first axis separates

three classes of areas whose coordinates on this axis are

respectively in the intervals [–0.39;–0.21], [–.08;–0.05] and

[0.22;0.46] (Fig. 5). The first class, which we call here the dorsal

class, contains the areas V1, V2, V3d, VP, V3A, MT, PO, PIP, LIP,

VIP, MSTd and MSTl, the second class the areas V4, VOT, FEF,

Figure 5. Coordinates of the vertices of Id(G1) (cortical visual areas) on the first factorial axis arranged in increasing order.

Figure 6. Projection of the d-representation Id(G1) of our model of the visual system onto the plan of the two first factorial axes. The vertices of the dorsal and ventral classes are
respectively represented by dots and triangles. ‘Relay’ areas are represented by squares. Continuous lines show reciprocal connections, lines with long dotted are connections from
left to right, and lines with short dotted are connections from right to left.
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V4t, FST, DP and 7a, and the third class, which we call here

ventral class, the areas PITd, PITv, CITd, CITv, AITd, AITv, STPa,

STPp, TF, TH and 46.

3.1.2 Quality of the Representation on the First Factorial Plan

The quality of the projection of a cloud of points onto its ith

factorial axis can be analyzed by two parameters: CORi and CTRi.

CORi(j) is the contributions of the ith factor in the representation

of the vertex j and CTRi(j) gives the importance of the vertex j for

the ith factor.

Among all the factors superior to one, the contribution τ2 of

the second factor to the total inertia of the cloud of points Id(G1)

is much more important than the others. In the same way, the

high value of COR1 + COR2 for 26 vertices of the graph G1 (Table

3) shows that most of vertices are well represented in the plan of

the two first factorial axes (first factorial plan). The distribution

of CTR1 and CTR2 over the vertices of the graph is well balanced.

The inertia of these axes also results from all the vertices of the

graph and not only from some of them. This confirms the

importance of these two factors for the whole graph.

In the first factorial plan, the second class is clearly divided

into three groups of areas: V4 and VOT, then FST, FEF, V4t and

DP, and finally 7a. Because the relative contributions COR1 and

COR2 of the four areas FST, FEF, V4t and DP are very low, the

justification of this grouping is to be found in the larger

dimensionality of the embedding space. In this way, we have

analyzed the projection of these vertices on the third axis. As half

of the inertia of the third axis results from the area V1 (Table 3),

we have removed this vertex from the graph G1 before analyzing

the projection on this axis. This projection supports the

grouping of three of these areas: FEF, FST and V4t (Fig. 7).

Note that these areas are very close to the center of gravity of

the cloud (Fig. 8). Their position near the center of the first

factorial plan is thus justified. On the other hand, even if the

membership of the second class for the area DP is not

questioned, moving it closer to the three previous areas, as

revealed by the first factorial  plan, would not be  justified.

Indeed, this area moves off following the fifth axis [CTR5(DP) =

50% and COR5(DP) = 59%].

Note also that the vertex V1 is the farthest vertex from the

center of gravity of the cloud (Fig. 8) and moves off following the

third axis [CTR3(V1) = 51% and COR3(V1) = 46%] even if it is not

badly represented by its projection onto the first factorial plan.

3.2 An Efficient Method for Clustering

In a general way, a problem of network’s partitioning may be

defined as the search for a partition of the set of vertices such

that the intra-class and inter-class edges verify some specific

properties. De Fraysseix and others have described a general

framework to efficiently solve a class of partitioning problems

relative to electrical networks (de Fraysseix et al., 1992): ‘First, a

distance is selected on the vertices of the graph, which ref lects

the properties to be satisfied by the classes of the partition.

Second, the graph is partitioned with an iterative method which

uses the notion of center of gravity to minimize the intra-class

inertia’ (Pk) defined by:

Definition 6 Let Pk = (C1,C2 ,...,Ck) be a partition of the set of

vertices V in k classes, and gi the center of gravity of the class

Ci. We denote (Pk) the intra-class inertia associated to the

partition Pk:

We used their methodology with the distance d we have

previously defined (cf. Appendix 3). Although this method was

originally conceived for non-oriented graphs, we here extend

it to oriented graphs by separating the successors from the

predecessors in the calculus of the distance. The optimal config-

urations (which minimize this inertia) are made up of dense

subgraphs, or subgraphs with a very low density, or subgraphs

without circuits, such that any of two classes are linked by

reciprocal connections, or by unidirectional connections (i.e.

connections which all have the same direction), or are not

linked. Notice that this process takes into account the n – 1

dimensions of the embedding space, i.e. all the variability of the

embedding graph. We use this clustering method to cluster the

graph G1 in three classes.  It  confirms exactly  the previous

clustering of the visual areas provides by the factorial analysis.

Relay Areas

The three classes of areas generated by both methods of

topological analysis define three subgraphs with a high density

(respectively 88, 86, 93%). There are very few connections

between the dorsal and the ventral classes (only 10% of the total

possible arcs linking the two classes), and nearly half of them are

unidirectional (13 out of 27), all from the dorsal class to the

ventral one (Table 4). On the contrary, 71% of the possible

connections between these two classes and the second class are

existent and 94% are reciprocal. Therefore, nearly every path

between the dorsal and the ventral classes goes through areas of

ℑ
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n
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Table 3
Quality of the representation Id(G1) in the first factorial plan

Areas COR1 COR2 COR3 COR1 +
COR2

CTR1 CTR2 CTR3

CIT d 82 8 1 90 6 2 1
CIT v 82 8 1 90 6 2 1
PIT d 82 4 0 86 5 1 0
V3A 84 1 0 85 5 0 0
AIT v 70 13 1 83 6 4 1
MT 77 2 0 79 5 0 0
TH 76 2 2 78 5 0 1
V3 67 10 0 77 4 2 0
V2 73 3 2 76 5 1 1
VIP 70 6 3 76 4 1 1
PIP 73 1 0 74 4 0 0
PO 67 5 2 72 5 2 1
AIT d 72 0 2 72 7 0 1
STP p 51 21 3 72 4 6 2
STP a 54 18 9 72 5 6 6
MST d 34 35 0 69 2 7 0
MST l 20 49 3 69 1 13 2
7a 1 67 1 68 0 18 1
PITv 46 21 2 67 3 6 1
VP 55 6 1 61 4 2 1
46 58 3 0 61 3 1 0
LIP 50 1 14 51 2 0 5
V4 1 43 9 44 0 7 3
VOT 0 44 17 44 0 7 5
V1 29 14 46 43 4 8 51
TF 40 0 16 40 2 0 5
DP 2 8 3 10 0 2 1
FST 5 2 18 7 0 0 5
FEF 0 2 28 2 0 0 4
V4 t 0 1 10 1 0 0 2

All values are percentages.

CORi(j) is the contribution of the ith factor in the representation of the vertex j. CTRi(j) gives the
importance of the vertex j for the ith factor.
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the second class. So, the visual system could be schematized by a

graph made up of two dense subgraphs (corresponding to the

dorsal and the ventral classes) bound by a set of seven vertices.

We chose to call areas of this second class ‘relay areas’.

4. Discussion

4.1 The need to Estimate Missing Data

We  used deterministic  graphs,  in  which the matrix of the

connections is binary. There is thus no possible quantification of

the unknowns. It is therefore necessary to establish a process of

decision that allows one to attribute a value of (0), or of (1), to all

unknown values in the connection matrix. This process could be

arbitrary. In this case, comparing the results obtained and

seeking out structural constants rules over all interpretations.

On the other hand, the process can also be guided by various

hypotheses regarding the network. In our study, we seek

information contained in the known part of the network that

could be extended to its whole. The assigning of a value to the

unknowns then becomes a process of interpolation. This is what

we have done in our work using the derived property P. We used

the specific topology appearing on the part of the graph

resulting from already published neuroanatomical experiments.

The results can then be interpreted directly by simply taking into

account the topological hypotheses that have been made. This

attempt to estimate missing data is obviously not a shortcut to

actually doing the experimental neuroanatomical work. Because

we have made a conjecture and because the rate of error of our

interpolation seems to be around 16%, our aim is not to ‘second

guess’ neuroanatomy but only to try to reduce the error on the

missing data in order to allow better specific models which

capture as much of the underlying structural properties of the

visual system as possible. However, our predictions might be

used to direct future anatomical studies so as to correct our

model and to confirm or invalidate our general results

concerning the functional organization of the visual system.

4.2 About the Choice of a Distance on the Graph of the

Visual System

The analysis of the geometrical representation of a graph

depends on the choice of the distance fitted on it. We have

chosen this distance d that takes into account the local

Figure 7. Coordinates of the vertices of Id(G1 – {V1}) (cortical visual areas except V1) on the third factorial axis arranged in increasing order.

Figure 8. Distance d to the center of gravity of the cloud Id(G1).

Table 4
Inter-class and intra-class (on the diagonal) edges for the three classes defined by factorial
analysis and clustering

Class 1 2 3

1 116
2 123 36
3 27 111 102
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connectivity into the graph but different choices would have

supplied other interpretations. For instance, the choice of a

distance which just takes into account the successors or the

predecessors would have allowed some conclusions about

processing without loops (examples of such a distance are d+ or

d–
defined in Appendix 3). It is possible that the same graph may

have two identical geometrical representations with two

different distances. In such a case, we may look for the graph’s

topological properties which explain that result. For instance, if

e(i,j) is the shortest path between two vertices i and j, it is easy

to  show that the topological structure of  the graph G1 we

revealed implies that the distributions of the distances e(i,j) and

d+
(i,j) are roughly the same. This applies to some similar

representations in the Young et al. (1995) paper.

4.3 About the Relay Areas

4.3.1 Some Control Tests

Among the 223 computed pairs of G1 we have seen that 106 of

them have a high probability of being true if G∞ has the property

P. We have computed a clustering of two new graphs

constructed from G1 by setting the 117 other computed pairs at

(0) or at (1). We find again the same structure with two dense

classes bound by some ‘relay’ areas. These areas are VOT, V4, 7a,

FEF and FST. This test supports the special status of ‘relay areas’

given to these five areas.

Moreover, we applied our two methods of factorial analysis

and clustering to the two ‘control’ cases of Young et al. (1995):

the first is obtained by setting all the unknowns at (0) and the

second by setting them at (1). The representations we arrived by

projection onto the first factorial  plan are  similar to  those

obtained by Young et al. using non-metric multidimensional

scaling (NMDS). But our algorithm of clustering reveals two

classes in the first case and three classes in the second one,

whereas  Young et al. alway distinguishes  only two classes.

Concerning this second control case, we owe our results to our

partitioning algorithm that takes into account the difference of

variance-explained between the two dimensions of the diagram.

The first factor (which is represented by a dorso-ventral axis)

explains 51% of the variance, although the second factor

(orthogonal to the first) only explains 13% of the variance. So, in

the partitioning process, the first factor is much more important

than the second one.

4.3.2 About the Artificial Data Given by the Interpolation

Even if we have already tested the quality of the algorithm (cf.

section 2.2.3), we have also verified that the ‘relay’’ areas are not

those which have the most artificial data given by the

interpolation process. We have sorted the 30 visual areas in

decreasing order of their unknown entries in the connections’

matrix (cf. Fig. 9). The seven ‘relay areas’ — V4t, FEF, VOT, DP,

7a, FST and V4 — respectively come in 1st, 2nd, 3rd, 6th, 22nd,

27th and 29th. There are, among them, at the same time, areas

with many unknowns and areas with few unknowns. More

generally, we have searched for a relationship between the

absolute values of the coordinates of the areas on the first

factorial axis (which separates the second class from the two

others) and the number of artificial data. There is no correlation

between these two data series (r2
= 0.04; P = 0.31).

4.4 Functional Interpretation of our Results

We have to be very careful of excessive functional inter-

pretations from a topological diagram, such as the one of Figure

6. As we have mentioned in the introduction, the visual areas are

differentiated by anatomical or physiological criteria and then

one is easily tempted to make the strong hypothesis of a

functional homogeneity of each cortical area. But since we do

not really know how true this hypothesis is, we remain general

in our following interpretations. All of them take into account

the percentages of Table 2, which may be understood as an

index of reliability of the computed pairs.

The dorsal and the ventral classes revealed by the present

analysis correspond to a large extent with the areas of the dorsal

and ventral streams proposed by several authors (Ungerleider

and Mishkin, 1982; Ungerleider and Desimone, 1986; Baizer et

al., 1991; Van Essen et al., 1992; Young, 1992). In such a case,

the ‘relay’ areas would be inter-stream areas allowing communi-

cation between the two streams. This interpretation is consistent

with previous neurophysiological studies that conclude that FEF

(Schall et al., 1995), V4 and the anterior STS (Baizer et al., 1991)

are important in the communication between the two streams.

More precisely, the position of the three clusters of the ‘relay’

areas (Fig. 6) and the analysis of their projections suggest that

both areas VOT and V4 are restrictive gateways between the

dorsal class and infero-temporal areas; that area 7a is an interface

between the upper part of each dorsal and ventral class; and that

the area FEF is an important node of the visual system.

Although area 7a has properties closely allied to LIP, VIP or

MST (Andersen and Gnadt, 1989; Colby et al., 1993), its

reciprocal connections with the upper part of the ventral class

distinguish it. This particular position of area 7a, revealed in

Figure 6, was already emphasized by several studies (Neal et al.,

Figure 9. Number of artificial data for each visual area in the connectivity matrix, arranged in increasing order. Relay areas could be areas with many artificial data or areas with few
artificial data.
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1988; Andersen et al., 1990). In the vision of Ungerleider and

Mishkin (1982) of two hierarchical pathways of the ‘what’ and

the ‘where’, this takes on great theoretical importance since area

7a links the upper parts of both streams.

The predictions of our model give to the frontal eye field

reciprocal connections with every other area except V1, and

nearly half of the artificial data has a percentage superior or

equal to 90% in Table 2. Recent experiments showing projec-

tions from FEF to posterior cortical areas (Stanton et al., 1995),

between FEF and both areas V4t and PITd (Schall et al., 1995),

between FEF and AITv (Webster, 1994) and from V2 to FEF

(Gattass, 1997) support some predictions of our model about the

values of unknown projections to and from FEF. Such a central

position of FEF would signify that this area plays a pivotal role in

many different aspects of cortical processing.

Whereas most of connections are reciprocal (90%), nearly half

the projections between the dorsal and the ventral classes are

not reciprocal. They are all from the upper part of the dorsal

class (intraparietal and medial superior temporal cortex) to the

upper part of the ventral class (areas named STPa, TF, TH and

46), especially area 46. In addition to that, area 46 has reciprocal

connections with every area of the ventral class. This suggests

that it intervenes as a dispatcher in the ventral class for some

aspects of visual processing which begin in the dorsal class.

Our predictions suggest the existence of projections from PO

to the occipital cortex. It gives area PO similar connections to

area V3A. Both areas are reciprocally connected to every area of

the dorsal class and have no connection with the ventral class.

Area TF is the only area of the ventral class reciprocally

connected with all the ‘relay’’ areas and all the areas of the

ventral class. Therefore, we may consider this area either as a

dispatcher on the way to the temporal areas, or, in the other

direction, it could be a node which integrates multiple results of

visual processing  in the temporal areas before sending the

information to the ‘relay’ areas.

Finally, the maximum value of the direct distance e(u,v) on

the graph G1 is 3 and is attained between V1 and each of the

areas STPp, STPa and AITd. There are neither direct nor indirect

connections from V1 to these areas. Hence, these three areas are

the farthest areas from that considered as being the main

entrance of the visual information into the cortex. It reinforces

the hypothesis that these areas are probably at a high level in a

hierarchical visual processing (Young, 1992;  Imbert and de

Schonen, 1994; Hilgetag et al., 1996). Even if we believe that

areas STP perform an integrative role, we must not be

embarrassed to put them in the ventral class. If we increase the

number of classes of the partition to 6, areas STPa and STPp cut

them off in a separate class. On the other hand, as these areas

have no connections with the dorsal class except with areas MST,

in our study it prevents them from belonging to any of the dorsal

or ‘relay’ classes. In any cases, this position of areas STP does not

preclude a highly integrative role.

Conclusion
We have presented a new method for studying the topology of an

oriented network that is not entirely known. It is based on an

algorithm of topological interpolation in conjunction with other

algorithms responding to vertex partitioning problems. Applied

to the macaque visual system, this method supports the

existence of two distinct classes of areas, one in the parietal part

of the cortex and the other in the temporal part, which are

connected to each other via ‘relay’ areas, especially involving the

frontal eye field. From a general point of view, these results

support recent work concluding that a functional clustering of

the cortex into two segregated hierarchical streams is surely

oversimplified (Schiller, 1993; Bullier et al., 1995; Gegenfurtner

et al., 1996; Rockland et al., 1996). Moreover, the very high

density of internal connections within both dorsal and ventral

classes makes it unlikely that the topological approach of the

network alone will provide much further insight into visual

processing within these two main classes.
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Appendix 1

Notations and Definitions in Graph Theory

Given a set V, we denote by W the set V × V – {(i,i); i ∈ V}. We mean by

graph a quadruplet G = {V,E,N,U} where V is a finite non-empty set of n

objects, called vertices (or areas), and E, N and U are three subsets of W

such that {E,N,U} is a partition of W. By a pair (i,j), we mean in the

following a ordered pair of vertices with i ≠ j. The pairs of E are called arcs

or connections and are m in number. If both arcs (i,j) and (j,i) belong to

E, they constitute a reciprocal connection. The elements of N are called

non-arcs or non-connections. The elements of U are called ‘unknown

pairs’. We say that a pair (i,j) is a known pair if it is a connection or a

non-connection. If U = ∅ (i.e. {E,N} is a partition of W), our definition of

a graph G matches that of Harary (1971) and Berge (1983). In such a case,

we may just define the graph thanks to the two sets V and E , and we note

G ={V,E}.

If the arc e = (i,j) belongs to E, the vertex i is a predecessor of the

vertex j in G, and the vertex j is a successor of the vertex i in G. By

convention, a vertex i is a predecessor and a successor of itself. The arc E

is said to be incident from the vertex i and incident to the vertex j. The

vertices i and j are respectively the initial and final extremity of the

arc E.

Definition 7 Given a graph G ={V,E,N,U}, we define ΓG
+(i) as the set of

the successors of the vertex i in G:

In the same way, we define ΓG
–(i) as the set of the predecessors of the

vertex i in G:

The adjacency matrix A(G) of a graph G is an n × n matrix (aij) with

aij = 1 if (i,j) is an arc of G or i = j, and aij = 0 if (i,j) is a non-arc or an

unknown arc of G. This matrix is not generally a symmetrical matrix.

Note that this definition of A(G) confuses non-connections and unknown

pairs.

A supergraph of a graph G is a graph with the same vertices as G and

containing all the connections and non-connections of G.

A subgraph of a graph G is a graph (V′,E′,N′,U′) with V′ ⊂ V and E′, N′
and U′ are the respective intersections of E, N and U with V′ × V′.

Density of a Graph

Definition 8 Given a graph G with n vertices and m arcs, we define its

density as the ratio m/n(n – 1).

The density is a number between 0 and 1, equal to the number of arcs

of G divided by the total number of possible arcs of G.

Appendix 2
Given Ip = (I1,I2,...,Ip) an ordered p-list of binary integers, let us denote

|Ip – Jp| the distance between the two lists Ip and Jp defined by:

We denote by the integer p!/k!(p – k)!.

Proposition 1 The mean distance between two binary ordered p-lists

is p/2.

Proof Given an integer k between 1 and p and a binary ordered p-list Ip,

there are ordered p-lists whose distance with Ip is k. Thus, the mean

distance between two binary ordered p-lists is:

The use of the two combinatorial formulas

immediately gives:

and the result. K
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Appendix 3: A Distance on the Vertices of an Oriented Graph

Definition 9 Given a graph G, we denote δ+ and δ– the mappings of V

× V in [0;1] such that:

where A g B symbolizes the symmetric difference between the two sets

A and B, i.e. the set of elements that belong exactly to one of the two

sets A, B.

(δ+)2 is called the Czekanowski–Dice coefficient for the matrix A(G)

(Dice, 1945). Because A(G) is a binary matrix, δ+ is a distance (Gower and

Legendre, 1986). As (δ–)2 is the Czekanowski–Dice coefficient for the

transpose matrix TA(G), δ– is also a distance. Notice that δ+(i,j) [resp.

δ–(i,j)] is equal to 0 if and only if the vertices i and j have the same

successors (resp. predecessors).

A distance d on a set V is Euclidean if the metric space V can be

isometrically embedded in Rk with respect to d.

Let ℜ be the equivalence relation iℜj ⇔ δ(i,j) = 0 and d+ and d– the

functions respectively induced by δ+ and δ– on V/ℜ × V/ℜ: d+ and d– are

Euclidean distances on V/ℜ × V/ℜ (Fichet and Le Calve, 1984; Gower,

1986).

Definition 10 Given a graph G, we denote by d the mapping of V/ℜ ×

V/ℜ in [0;1] such that:

Proposition 2 The mapping d is a Euclidean distance on V/ℜ × V/ℜ.

Embedding V in the Euclidean space Rk

Let us consider a Euclidean distance d on a vertex set V of an abstract

graph G; a d-embedding Id(G) of G in the space Rk is a mapping of V in Rk

that is isometric with respect to d. Let (ip)1 ≤ p ≤ k and (jp)1 ≤ p ≤ k be the

coordinates of vertices i and j in Rk, the Euclidean distance

is equal to the distance d(i,j) between the vertices i and j. If n = |V|, V

has a d-embedding in Rn–1. The geometric representation Id(G) is easier to

analyze if d is Euclidean because it has no distortion.

Factorial Analysis of Id(G)

Factorial Axes

We consider new coordinate axes, (∆p)p ≥ 1, in the space Rk, generated by

vectors (Fp)p ≥ 1, centered on the center of gravity of Id(G), and around

which the vertices are organized. These axes are called factorial axes. If

(i1, i2, . . ., ik) are the coordinates of a vertex i in this new system of

reference, we define the inertia iS(G) of the graph G in the subspace S

generated by (Fp1, Fp2, . . ., Fpk):

where

∆1 is the axis onto which the inertia of  the  projection of Id(G) is

maximum, ∆2 is the axis orthogonal to ∆1 such that the inertia of the

projection of Id(G) onto the subspace (∆1,∆2) is maximum, and so on, ∆p

is the axis orthogonal to the subspace (∆1, . . ., ∆p–1) such that the inertia

of the projection of Id(G) onto the subspace (∆1, . . ., ∆p) is maximum.

Then, each axis ∆p is associated with a direction of maximal stretch of

Id(G). Each coordinate, in this new coordinate system, is called a factor.

The factors are in decreasing order from the first to the pth.

Let D = (dij)1 ≤ i,j ≤ n be the n × n matrix of the distances d on the graph

G, and Ω = (ωij)1 ≤ i,j ≤ n the matrix defined by:

where

If d is Euclidean, the bilinear symmetric form associated with the matrix

Ω is positive semi-definite (Torgerson, 1958). In such a case, if λp are the

eigenvalues of Ω, they are positive, and supposing they are arranged in

descending order, the corresponding eigenvectors are the Fps’ and then

guide the axes ∆p.

Contributions

If k is the dimension of the embedding space, for all p ∈ [1;k], the

eigenvalue λp is equal to the inertia (G) of G along ∆p (Benzecri, 1984),

and

gives the importance of the factor p in the representation of G. We denote

by CORp(i) the relative contribution of the factor p to the distance

between the vertex i and the center of gravity of Id(G):

CORp(i) + CORq(i) gives the quality of the representation of the vertex i in

the factorial plan (p,q). We denote by CTRp(i) the relative contribution of

the vertex i to the inertia (G) of G along the pth factorial axis:

Given an integer p, the analysis of the distribution of the CTRp(i) can be

used to decide if the inertia of the axis p results only from some vertices,

which have a large CTRp, or results from all the vertices of the cloud.
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