
We investigate self-sustaining stable states (attractors) in networks
of integrate-and-fire neurons. First, we study the stability of
spontaneous activity in an unstructured network. It is shown that
the stochastic background activity, of 1–5 spikes/s, is unstable if all
neurons are excitatory. On the other hand, spontaneous activity
becomes self-stabilizing in presence of local inhibition, given
reasonable values of the parameters of the network. Second, in a
network sustaining physiological spontaneous rates, we study the
effect of learning in a local module, expressed in synaptic
modifications in specific populations of synapses. We find that if the
average synaptic potentiation (LTP) is too low, no stimulus specific
activity manifests itself in the delay period. Instead, following the
presentation and removal of any stimulus there is, in the local
module, a delay activity in which all neurons selective (responding
visually) to any of the stimuli presented for learning have rates which
gradually increase with the amplitude of synaptic potentiation.
When the average LTP increases beyond a critical value, specific
local attractors (stable states) appear abruptly against the
background of the global uniform spontaneous attractor. In this case
the local module has two available types of collective delay activity:
if the stimulus is unfamiliar, the activity is spontaneous; if it is similar
to a learned stimulus, delay activity is selective. These new
attractors reflect the synaptic structure developed during learning.
In each of them a small population of neurons have elevated rates,
which depend on the strength of LTP. The remaining neurons of the
module have their activity at spontaneous rates. The predictions
made in this paper could be checked by single unit recordings in
delayed reponse experiments.

It has recently been pointed out (Bernander et al., 1991; Rapp et

al., 1992; Amit and Tsodyks, 1992; Shadlen and Newsome,

1994) that the apparently low background spontaneous activity

in cortex, ∼1–5 spikes/s, is high and prominent when looked at

from the vantage point of the post-synaptic neuron. The reason

is that the connectivity in neo-cortex is very high [of the order of

20 000 synapses per neuron (e.g. Braitenberg and Schüz, 1991),

so a neuron receives an enormous number of afferent spikes per

second before it engages in any stimulus-related computational

activity. Bernander et al. (1991) and Rapp et al. (1992) employed

advanced analytical and numerical methods to evaluate in detail,

within cable theory (Rall, 1977), the effect of this high

background input on neural physiological parameters. Amit and

Tsodyks (1992) emphasized the effects of this high background

on the performance of the network as an attractor neural

network, sustaining stimulus selective elevated rates following

the removal of the stimulus. Observing that the additional

afferents due to a reverberation provoked by a stimulus are small

in comparison with the background, it was concluded that when

operating as attractor networks the neurons can be described as

linear elements on the input side. This has been an underpinning

of essentially all neural network modeling (e.g. Amit, 1989).

The common conclusion to the first three studies is that

neurons operating in the cortex have their physiological

parameters significantly renormalized by the f lux of spon-

taneous activity. A common assumption is that at this low activity

rate, the spikes arriving on different synapses are uncorrelated.

As a consequence networks in a living cortex are assemblies of

effective elements, rather remote from the isolated neurons in

a slice. The parameters of the renormalized neuron can, in

principle, be computed from those of the bare one (Bernander

et al., 1991; Rapp et al., 1992), or can be determined pheno-

menologically.

It is a curious fact that in constructing explanatory schemes

for computational phenomena in cortex spontaneous activity has

never been dealt with. This is true both for phenomenological

explanations and for detailed models. What underscores the

ommission is the fact that it is always the case that alongside any

computational dynamics of a cortical region there is, depending

on  the stimulus, the option that the region will remain at

spontaneous activity levels, if and when the stimulus does not

relate to any previously learned or coded features. Recently we

have presented a detailed quantitative account of delay activity

correlations  in  working  memory (Amit et al., 1994),  again

avoiding the issue of spontaneous activity. At this point the need

for a remedy has become pressing.

The prominent presence and the essential effect of the

background neural activity, renews the question of the origin of

this activity in the neural dynamics and of the mechanisms that

keep it stable. Why would the cortex be stable at a rate of ∼1–5

s
–1

? One could invoke various external agents, but an

explanation in terms of the system’s own dynamical rules and

parameters would be more satisfying.

Moreover, both anatomy and neurophysiology suggest a

modular or columnar organization of the cortex on the scale of 1

mm
2

(Braitenberg and Schütz, 1991). This creates a local

environment in which stimulus selective enhanced spike rates

have been observed during the delay period following the

removal of the stimulus, in delay response tasks, in several areas

of the association cortex (e.g. in IT cortex: Fuster and Jervey,

1981; Miyashita and Chang, 1988; in prefrontal cortex:

Funahashi et al., 1989; Wilson et al., 1993; in posterior parietal

cortex: Koch and Fuster, 1989; for a review see Fuster, 1995). We

refer to  such persistent activity as ‘delay activity’. Another

question is therefore the origin of this self-sustained delay

activity, which preserves an active memory of a visual stimulus

after it is removed.

In what follows we shall argue that an explanation to both

questions is available. What makes this program non-trivial is the

fact that it must deal with several aspects concurrently.

First, since spontaneous activity is non-specific and global,

it must be an attractor which is global on the cortical level. In

other words, spontaneous rates at the observed levels have to

reproduce the same rates when considered as afferents in
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plausible cortical conditions, and these rates have to be stable,

i.e. local f luctuations in rates, due either to variations in local

spontaneous activity or to local selective delay activity, have to

be dynamically suppressed. As we will see, this stability require-

ment imposes severe constraints on the various neural and

synaptic parameters of the model neural assembly. One must

then confirm that synaptic modifications due to learning do not

destabilize this spontaneous activity state, consistent with the

global parameter constraints.

Second, on top of this great cortical attractor, local variations

in synaptic connectivity due to learning must allow for selective

(stimulus dependent) activity, either during the presence of a

stimulus or following it. This implies a coexistence between

spontaneous and selective activity states in the local module.

Furthermore, in the local, selective attractor, neurons whose

rates are not significantly enhanced (background neurons)

usually maintain a spiking rate at levels similar to the global

spontaneous activity.

In order for the selective attractors to be stable, noise due to

spontaneous activity in the background neurons (who greatly

outnumber those carrying the selective activity) should not wash

out the signal in the selective population. This issue becomes

even more stringent when one observes that the rates in a local

selective attractor are usually close to the spontaneous rates

(Miyashita and Chang, 1988; Wilson et al., 1993; Nakamura and

Kubota, 1995). Thus, one has to demonstrate that selective

activity states with these properties can actually be stabilized

with realistic parameters.

The Present Work — Assumptions and Summary of

Results

In the present study we investigate the stable states (attractors)

of a network of integrate-and-fire neurons as a framework for

discussing the issues raised above. We make the following

assumptions:

1. Background activity is stochastic. This is an expression of

the empirical character of spontaneous activity, as well as a

condition under which we can analyze its stability. We

conceive the origin of the stochasticity in the unknown and

sporadic inputs that affect remote parts of the cortex.

2. In the absence of a stimulus, all neurons in the cortex

see the same environment, apart from statistical

f luctuations. This expresses the position that the

spontaneous activity is non-specific: whatever variation

among neurons exists, it is due entirely to statistical

f luctuations in the distribution of synapses. It also expresses

the view that spikes emitted in this dynamical phase are due

to f luctuations in the afferent input arriving at a neuron. It

is exactly these f luctuations which we shall estimate below,

in order to determine the stability of this underlying activity

state.

3. Spike emission times of different neurons are

uncorrelated. This implies the supposition that neural

activity does not synchronize in the range of biological

parameters. Experimental cross-correlations indicate some

deviation from this hypothesis which are beyond the

present account.

4. The synaptic input to every cell is the linear sum of

individual synaptic contributions.

5. The dynamics of both spontaneous and selective activity

can be described by approximating the synaptic input of a

typical neuron by a Gaussian stationary process. This is

justified if spikes arrive at a low rate on a large number of

uncorrelated channels (hence a sum of many Poisson

processes) per neural integration time (Amit and Tsodyks,

1991). In the case of excitatory as well as inhibitory inputs,

each of the two inputs can be considered as an uncorrelated

Gaussian process, due to the large number of incoming

spikes of either type. The sum of the two processes can

therefore be approximated by a Gaussian process, whose

mean is the difference of the two means and whose variance

is the sum of both variances. This is where the present

approach goes beyond a naive ‘mean-field’ approach.

These assumptions imply that a reliable description is

available in terms of spike rates and afferent currents, rather than

actual spikes. In this context we study the attractors of the

network and their stability against small f luctuations.

We find that when all neurons are excitatory it is impossible

to stabilize realistic spontaneous rates. The stable states have all

neurons either quasi-silent or firing at elevated rates. If inhibitory

neurons are included, spontaneous rates of 1–5 spikes/s (s
–1

) can

be stabilized for reasonable values of the parameters of the

network. If the integration time constants of the membrane

potentials (of the spike emitter) for excitatory and inhibitory

neurons are equal, stability requires that the average local

excitatory and inhibitory synaptic inputs to every neuron of

the network closely balance.   If inhibition   integrates its

depolarization a couple of times faster, this condition can be

relaxed and realistic spontaneous rates are stable even if the local

excitatory inputs dominate.

We find that the spontaneous activity is globally stable, as is

the state with all neurons silent in absence of external inputs.

But a ‘cortex’ that is in an active state of spontaneous activity will

not drift gradually into the silent state. A major coherent

f luctuation on a very large scale will be required for such a

transition.

In that same network, which can maintain spontaneous rates

of the order of 1–5 s
–1

, we observe the effects of learning in a

local module, as expressed in the potentiation of the excitatory

efficacies in some specific populations of synapses. It is found

that when long-term potentiation (LTP) takes place one can

observe two phases. At low potentiation levels (early learning)

there is a non-selective enhancement of the rates of all cells that

have been selective (visually responsive) to any of the stimuli.

Then, when the average potentiated synaptic efficacy exceeds a

critical value, the local network develops rather abruptly a

variety of local attractors on the background of the stability of

the uniform global one. The local attractors ref lect the structure

implied by the learning process. In such an attractor a small

population of neurons, representative of a particular stimulus,

remains active at elevated rates (of the order of 20 s
–1

) following

the removal of the stimulus. The actual rates depend on the mean

potentiated synaptic value. The neurons of the local module

which do not participate in the active representation of the

particular stimulus (background neurons) remain at spontaneous

rates. The state of selective delay activity in the module,

following presentation of a stimulus, is an active memory of this

stimulus. However, even in the presence of LTP and selective

attractors with elevated rates, the local module has always the

option of a stable uniform activity at rates close to the

spontaneous ones. This state of activity is chosen by the module

when the afferent stimulus is uncorrelated with what has been

learned in the past (e.g. Amit and Brunel, 1995). These
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phenomena are direct predictions for single cell recordings

during learning in delayed match to sample experiments.

It should be emphasized that, besides the structural features

of the synthesis of single neuron and network effects, this

modeling effort provides another important bonus. It provides

the first account of the coexistence of low attractor rates in a

small subpopulation (∼1% of  the cells)  with relatively high

spontaneous rates (in ∼99% of the cells), as is the case in the

recordings during delayed match to sample experiments

(Miyashita and Chang, 1988; Wilson et al., 1993). The relatively

high rates of spontaneous activity are present both in the wide

cortical area and the neurons of the local module which do not

participate in the foreground of a given retrieved memory.

The organization of the paper is as follows. We first describe

the model network and its elements. Then we study the

spontaneous stable states in a purely excitatory network. When

inhibitory units are added it is shown how they stabilize a global

attractor in which neurons have realistic spontaneous rates.

Finally, we investigate the effect of learning on the stable states

of the network.

Methods

The Network

We consider a local module that is a large network, containing some 10
5

neurons (a cortical column) embedded in a vast sea of neurons (the entire

cortex). We have in mind a local module of 1 mm diameter in a living

cortex, as is observed in inferior temporal or pre-frontal cortex (Miyashita

and Chang, 1988; Wilson et al., 1993). Two features distinguish the local

module from the global network: the intensity of excitatory connectivity

(high internally and low otherwise) and the range of the inhibitory

neurons. Neurons receive three types of synaptic inputs: from recurrent

(collateral) excitatory connections  with  other neurons  in  the  same

network; from inhibitory neurons in the module; and from excitatory

neurons in other unspecified areas. The latter are considered excitatory,

since only pyramidal cells have axons that are long enough. These

afferents represent unrelated activity in the rest of the cortex, and carry

the stochastic component induced by sporadic inputs from remote parts

of the cortex (see assumptions above). They are modeled as Poisson

processes with a spontaneous spike rate which is kept fixed. Estimates as

to the proportion x of excitatory synaptic inputs on a given neuron from

local collaterals vary between 50 and 80%. For numerical examples we

use the value 50% (Braitenberg and Schütz, 1991). A schematic

representation of the connectivity is sketched in Figure 1.

To highlight the difficulties and their potential resolutions we first

consider the system in the absence of the inhibitory feedback. Then the

context is enlarged and the network includes both excitatory and

inhibitory units. The collateral connectivity in the local network has no

geometric structure: a neuron has equal probability of synapsing on any

other neuron in the local module. To remain within biologically

acceptable territory, the number of inhibitory units in the module is taken

to be 20% of the number of local excitatory neurons (Abeles, 1991).

The Integrate-and-fire Neuron

Dynamics of the Membrane Depolarization

The network is composed of leaky integrate-and-fire (IF) neurons (e.g.

Ricciardi, 1977; Tuckwell, 1988), converted into an interacting system of

synaptic currents and output spike rates (Amit and Tsodyks, 1991). The

assumptions underlying this description of the neurons will be

scrutinized below. Each neuron in the local network is characterized by

its depolarization at the soma V(t), which obeys to the integrator equation

(1)

where τ ∼ 10 ms is the integration time of the membrane depolarization at

the spike emitting part of the soma and I(t) is the synaptic current

charging that part of the membrane. Note that the current is expressed in

units of the potential. The underlying conductance is absorbed in the

synaptic efficacy (equation 2).

When the depolarization reaches the threshold θ the neuron emits a

spike, and the potential is reset to a value H after an absolute refractory

period τ0 ∼ 2 ms. In the situation we are considering, this absolute

refractory period will not be relevant since the mean interspike interval

will be very long. Yet it fixes the absolute scale of the rates, since it is the

inverse of the maximal rate. The post-spike reset potential will be set to

zero in numerical studies. We have checked that at low rates its actual

value is immaterial.

Synaptic Inputs to the Cells

A neuron receives some C ∼ 20 000 synaptic contacts from other cells

(Braitenberg and Schütz, 1991). A fraction x of these synapses come from

the local module, while the remaining synapses come from outside. In the

unstructured situation, the potential variability in synaptic efficacies on a

neuron is schematized in the following way: the synaptic efficacies Ji (i =

1,…,C) on the dendrites of a given neuron are assumed to be randomly

distributed, according to a distribution P(J), with mean J and standard

deviation (SD) ∆J. This distribution can account for randomness in the

synaptic transmission, different electrotonic distances of the synaptic

sites on the dendrites, etc.

Dynamics of the Afferent Currents

The effective, afferent current I(t), due to the temporal variation of the

synaptic conductances provoked by afferent spikes and charging the

spike-emitting integrator in equation (1), obeys the equation:

(2)

i goes over the synaptic sites on the dendrites, the sum over k is over all

spikes arriving at a given site, and ti
k is the time of arrival of spike number

k at synapse i. τ′ is the time constant of the conductance changes at the

synaptic sites (e.g. Frolov and Medvedev, 1986; Amit and Tsodyks, 1991).

τ multiplying Ji gives Ji the dimensions of Ii.

If τ′ << τ, i.e. the time constant of the currents is much shorter than

that of the potentials, one can replace I in equation (1) by the source term

on right-hand side of equation (2), i.e.

(3)

In this case, on a time scale of the order of τ, the depolarization V(t) is a

sum of unit contributions each with amplitude Ji.

Dynamics of a Single EPSP

Let us assume that V = 0 at t = 0, and a spike arrives on a synapse i with

τ &V t V t I tb g b g b g= − +

′ = − + −∑∑
=

τ τ δ&I t I t J t ti i
k
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Figure 1. Connectivity scheme: excitatory and inhibitory neurons in the local network
(module) receive collateral connections from neurons in the same module.
Excitatory–excitatory local connections may be structured by learning. All other
connections are structureless. Both excitatory and inhibitory neurons in the module
receive excitatory synaptic inputs from elsewhere in the cortex.
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efficacy Ji. In the absence of other spikes, the potential, for t > 0, will be

given by

This is the unitary EPSP in the model, when the time constant of the

currents is very short. The mean of Ji, J, is also the average EPSP

amplitude. Estimates of J range from 0.05 to 0.5 mV (McNaughton et al.,

1981; Komatsu et al., 1988; Thompson et al., 1988; Sayer et al., 1990;

Mason et al., 1991). We use an average of 0.2 mV, and with a threshold of

20 mV, some 100 simultaneous synaptic events will bring the

post-synaptic neuron to threshold. The variability in amplitude of unitary

EPSPs from different synapses is taken of the same order as their average

amplitude, thus ∆ ∼ 1 (Mason et al., 1991).

Independent Poisson Activation of the Input Channels

Suppose that each synapse, from the local module as well as from outside,

is activated by an identical, independent Poisson process, and spikes

arrive at each channel with uniform rate ν. (For simplicity we assume that

ν is uniform. The argument can be extended to account for variability of

ν due to variabilities in the connectivity. See also Discussion.) If ν is low,

but in an interval τ the number of arriving spikes is high, due to the large

number of input channels C, then the source of the depolarization has a

Gaussian distribution, whose mean µ(ν) and SD σ(ν) are rate-dependent.

To calculate the output rate of the neuron we use two different neuronal

models, the simplified IF neuron and the full IF neuron.

Simplified IF Neuron

To obtain a preliminary idea concerning the neuron’s output rate, we use

the following simple approximate treatment of the spike emission

process. In every integration time interval τ we assume that there is no

decay. In each of these intervals the depolarization V is equal to the sum

of unitary inputs Ji arriving in that interval. This sum would be a Gaussian

variable. At the end of the interval either a spike is emitted and the

depolarization becomes zero or no spike is emitted and still the de-

polarization is reset to zero, this time as an expression of the exponential

decay of the integrator. The probability for the emission of a spike in such

an interval is taken to be equal to the probability that the depolarization

goes above threshold. These are crude approximations, but they do

provide reasonable guides. They are eliminated in the full IF neuron.

Within this framework, if the synaptic input to the neuron in the τ
interval has mean µ and SD σ and the threshold is θ, the probability that a

spike be emitted in an interval τ is:

(4)

where we have performed the change of variable z = (I – µ)/σ. Pr(ν)

depends  on the rate of the afferent spikes via α(ν), expressing the

‘distance’ between the average input and the threshold in units of the SD

of the distribution,

(5)

Note that all rates are expressed in spikes per integration time τ, or

equivalently in units of τ–1. The resulting output spike rate νext is therefore

given by

(6)

in s
–1. If the resulting output spike rate is to be very low, we must have µ

< θ. Otherwise the probability is > 0.5 per τ, and if τ ∼ 10 ms the rate will

be > 50 s–1.

Full IF Neuron

In a more realistic description of spike emission, the depolarization V(t) is

governed by equation (3), in which it is charged by a current of Gaussian

distribution, uncorrelated at different times, and a spike is emitted every

time the depolarization V(t) reaches threshold. The output spike rate is

given by the inverse of the mean time between two consecutive events in

which the depolarization reaches threshold [the mean interspike interval

is approximated by the solution of the mean first passage time (e.g.

Ricciardi, 1977; Tuckwell, 1988) plus the absolute refractory period τ0],

namely

(7)

with ϕ(u) = √(π)exp(u2)[1 + erf(u)]. µ(ν) is the rate-dependent mean of

the Gaussian distribution of afferents depolarizing the cell and σ(ν) is √2

times the SD of the cell depolarization σ[V]. In a stationary situation, σ(ν)

is equal to the SD of the synaptic inputs σ[I], since σ[V]  = σ[I]/√2

(Tuckwell, 1988). The simplified model of the neuron is a good

approximation of the full IF neuron when the spike rates are much lower

than 1/τ (100 s
–1).

Concerning the assumptions made above, the rates arriving at each

synapse on a given neuron are low, yet the number of synapses is so high

that the assumption of a high number of spikes arriving in an integration

time of the depolarization is reasonable. The most tenuous assumption is

probably that concerning the ratio of the two time constants. If the time

constant of conductance changes is of the same order or larger than that

of the depolarization (Bekkers and Stevens, 1989; Hestrin et al., 1990;

Zador et al., 1990), the replacement leading to equation (3) is not valid

and the conditions leading to the current-rate transduction function,

equation (7), are not satisfied. We return to this issue in Discussion.

In this paper it is assumed that at low rates the process of spike

emission of each neuron is a Poisson process. Effects of the absolute

refractory period, or of the resetting of the membrane depolarization

following the emission of a spike, are negligible if the interspike interval

is long compared with the integration time. Hence we shall consider only

solutions with rates much smaller than 1. In such situations the variability

of the interspike intervals is naturally unity, avoiding the complications

raised by Usher et al. (1994) and Softky and Koch (1993).

Results

Excitatory Unstructured Network of Simplified Neurons

We begin with a network of simplified excitatory neurons only.

The output rate of a neuron is given by equations (4–6), in which

the mean µ and SD σ of the afferent current in an interval τ are:

(8)

where C is the number of synapses per neuron and the

excitatory synapses have a distribution of efficacies with mean J

and SD J∆, as described in Methods. For example, in cortical

conditions, taking τ = 10 ms, C = 20 000 and ∆ = 0, i.e. uniform

synapses, and ν = 2 s–1, then

µ = 400 J and σ = 20 J

Thus the mean number of spikes arriving at a neuron per

integration time is typically a few hundred, with f luctuations of

a few tens.

Self-reproducibility

As was mentioned above, when the activity is purely

spontaneous it is considered uniform globally. In that case the
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input to every neuron is equal on average, irrespectively of what

proportion of the synapses are local and what are external. Since

it is the rate itself which determines both µ and σ, the

reproducibility of the spontaneous rate requires that the rate

which determines these parameters be equal to the rate at which

spikes are produced given those parameters, i.e. we must have

(9)

where α(ν) is given by equations (5) and (8). Given C and θ/J,

one can solve equation (9) for the spontaneous spike rate which

reproduces itself on average.

The full curves in Figure 2 are the function Pr(ν)/τ for C = 20

000 and two values of θ/J. The solutions of equation (9) are the

intersections of any of the curves with the straight line of slope

unity in the figure. The intersections away from zero are at

self-consistent average rates which are in the range of realistic

spontaneous rates (1–5 s
–1

).

Local Stability

If a small f luctuation in the local mean rate displaces the rates in

the system with no restoring force, this state is of little interest.

Hence, we must look for solutions of equation (9) which are

stable, i.e. which suppress f luctuations and restore the mean

value of the spontaneous rates. For the rate to be stable against a

f luctuation in the local mean rate, the change in the output rate

must be smaller than the change in the input rate that caused it.

The external synaptic input is assumed fixed, with each synapse

coming from outside the local module activated at a rate νext. The

logic is that the dynamics of the external rates is outside our

description, and the global constraint is that all spontaneous

rates be equal. Local synapses are again activated at mean rate ν.

They constitute a fraction x of the synapses on any neuron.

The µ and σ of the afferent input in an interval τ become:

(10)

and

(11)

The condition for self-reproducibility of rates is equation (9),

where α(ν) is given by equation (5) with µ and σ given by

equations (10) and (11).  The condition for stability against

f luctuations in the local rates is

(12)

where ν* is the self-reproducing rate, the solution of equation

(9).

We typically set x = 0.5 (Braitenberg and Schütz, 1991), i.e.

afferents come in equal proportions from the local module and

from the outside. Note that the results are not sensitive to the

particular value of x. νext, the external spike rate, is set at a fixed

plausible value of spontaneous rate. Then the ratio θ/J is varied

so that ν* = νext is a solution of equation(9). This would be a

globally consistent self-reproducing rate. The stability of a given

self-reproducing rate is investigated by varying Pr(ν) with

respect to ν, at fixed θ/J and νext, to check the stability condition,

equation (12).

It turns out that at the desired rates 1–5 s
–1

the condition (12)

never holds. For equation (9) to have a solution at these rates one

must have

(13)

i.e. the mean synaptic input at about two SDs below the

threshold. For this value of α one can approximate dPr(ν)/dν
(equation 9), by (see Appendix A for details)

(14)

where µl = xCντJ is the average input coming from local collateral

synapses. For the parameters chosen, µl/σ is of the order of 10,

implying that the solutions at these rates are highly unstable.

This instability can be read from Figure 2. Any perturbation of

the rates will drive the network either to a state where all

neurons are essentially quiescent, or to a state of high activity, in

which the assumptions of the analysis do not hold. This is related

to the fact that there are only excitatory elements in the

network. The network lacks regulatory units that would control

local perturbations in the rates. Note also that the ratios θ/J

required to produce the low self-reproducing rates are very high.

This again is due to the fact that we have only excitation.

Including inhibition, the same self-reproducing rates are ob-

tained with lower, more plausible, threshold to average EPSP

ratios.

The simplified argument presented above serves to define the

problem and to give an indication of the difficulties involved in

finding a solution for the existence and the stability of

self-reproducing spontaneous spike rates. As far as networks

composed exclusively of excitatory neurons are concerned, a

more careful analysis in a network composed of full IF neurons

does not modify the conclusions. To have a stable attractor with

low rates, it is necessary to introduce inhibitory neurons. This is

done in the following.

The Role of Unstructured Local Inhibition

The main effects of the inhibitory input on the Gaussian process

arriving at the soma of a neuron are to reduce the mean

depolarizing current while increasing the SD of the net
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Figure 2. Numerical solution of equation (9) for two self-reproducing rates. Full curves:
Pr(ν); straight line of slope unity (dotted): left-hand side of equation (9). The
self-reproducing rates are the intersections for low non-zero rates. For θ/J = 500
(curve a) ν = 2.3 s–1, for θ/J = 940 (curve b) ν = 4.5 s–1. In both cases it is highly
unstable (see text).
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depolarizing current. These effects will decrease the value of the

ratio µl/σ in equation (14) and provide stability.

Both excitatory and inhibitory neurons are leaky

integrate-and-fire neurons. Each type is characterized by a

threshold θi, a post-spike hyperpolarization Hi, an integration

time constant τi, with i = E,I indicating whether the neuron is

excitatory or inhibitory respectively. Each neuron receives a

Gaussian white noise current of mean µi and SD σi, through

Ci synaptic contacts, which are divided in CiE excitatory

synapses and CiI inhibitory ones. The synapses in  the  net-

work are now of four types, depending on all the possible types

of pre- and post-synaptic neurons. For each synaptic type the

efficacies are drawn randomly from the distribution Pij(J), with

mean Jij and SD Jij∆Ij. i and j denote the post- and pre-synaptic

type of neuron respectively. A fraction xi of  the excitatory

connections come from outside the network and are activated

at a rate νext. The local excitatory synapses are activated at a

uniform rate νE, while the inhibitory ones are activated at a uni-

form rate νI.

The number of parameters is large. To reduce this number we

make the following choices, which we believe to be in a

plausible region:

. both types of neurons receive an equal number of inputs C =

22 000, divided into CiE = 20 000 excitatory and CiI = 2000

inhibitory ones. The latter are assumed to originate all in the

local module;. both types of neurons receive an equal fraction of excitatory

inputs from inside the local module. We choose x = 0.5;. the relative SDs of the synaptic efficiacies are equal for all four

synaptic types, i.e. ∆Ij = ∆ = 1 for all i and j (Mason et al., 1991);. both excitatory and inhibitory post-spike hyperpolarizations

are set to zero, i.e. Hi = 0 for all i.

We have checked that varying individually each of these

parameters has a very mild effect on the dynamics of the

network, provided the rates remain low.

The remaining parameters are

. the ratio of average strengthes of the inhibitory to the

excitatory synapses, JEI/JEE and JII/JIE;. the ratio of the integration time constants τI/τE;. the rates νE and νI.

The ratios θE/JEE and θI/JIE are determined by the requirement

that preselected values for the rates νE and νI be self-reproducing

given all the other parameters, and that the resulting νE = νext.

The input to each type of neuron is again Gaussian. The mean

and variance of the input to an excitatory neuron are:

(15)

and

(16)

where λ = 1 + ∆2. Though the above expressions are largely

self-explanatory, we discuss them in some detail in Appendix B.

For inhibitory units we have

(17)

and

(18)

We now perform the same type of analysis as in the case of

excitation only, first in a network of simplified neurons in which

excitatory and inhibitory neurons have identical characteristics,

then in the more realistic network of leaky integrate-and-fire

neurons.

Simplified Neurons

To simplify the qualitative argument, we set in equations

(15–18) τI = τE = τ (i.e. equal inhibitory and excitatory time

constants); JEE = JIE = J (equal average excitatory efficacies to

both types of neurons); JEI = JII = g J (equal average inhibitory

efficacies to both types of neurons); θI = θE = θ (equal

thresholds); and ∆ = 0 (uniform synapses). In this case both types

of neurons have equal rates ν and receive a synaptic input of the

same mean and variance, i.e.

(19)

where µext and σext
2 are the mean and variance of the external

input. Since with the present choice of parameters τ, ν, µ and σ
are equal for both types of neurons, their self-reproducing rates

ν* are the solution of the same equation, i.e.

(20)

where ν* = νext, as above, and Pr is given as a function of ν by

equation (4). The condition for the stability of a solution is again

(21)

Local Stability Analysis

We choose again νext in the range 1–5 s–1, and the

self-reproducing rate ν* = νext. First, the self-reproducing rates are

imposed by varying the ratio θ/J in equation (20). Then the

variation of Pr with the local rate ν is computed at fixed νext and

θ/J. For a low self-reproducing rate, equation (21) reduces to the

condition (see Appendix A for details)

(22)

where µl and σl
2

are, respectively, the mean and the variance of

the synaptic input coming from the local collaterals, i.e.

The first term on the right-hand side of equation (22) is the

relative perturbation of the output rate due to the perturbation
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of the mean of the synaptic input, while  the second term

corresponds to the relative perturbation due to the variation of

the variance of the synaptic input. When xCEE > > gCEI, i.e. there

is a predominance of excitatory over inhibitory inputs, the first

of the two terms in the right-hand side of equation (22)

dominates. Since there is a large number of excitatory incoming

spikes, µl >> σ and condition (22) is violated. On the other hand,

if excitatory and inhibitory inputs roughly balance, i.e. xCEE ∼
gCEI (with our parameters: CEE = 10 000 and CEI = 2000, implying

g ∼ 5, i.e. inhibitory synapses are ∼5 times more efficient than

excitatory ones), the SD of the synaptic input becomes of the

same order or larger than the mean local input µl, which makes

it possible for the stability condition to be enforced.

The critical value of g at which the self-consistent solution of

equation (20) becomes stable is actually slightly larger than 5 in

a wide range of rates. It varies from g ∼ 5.5 for ν = 1 s
–1

to g ∼ 5.1

for 5 s
–1

. This means that the inhibitory inputs have to be slightly

larger than the local excitatory ones for the self-consistent rates

to be stable. The reason is that when g = 5, i.e. local excitation

exactly balances inhibition, the variation in the SD of the input

acts to destabilize the solution of equation (20). Note that the

total synaptic input remains depolarizing even for g > 5, due to

the external excitatory component.

To visualize the effect of inhibition on the stability of the

solution of equation (20) we present in Figure 3 the graphical

solution for two values of the rate (ν = 2.3 and 4.5 s
–1

), each for

three values of the relative inhibitory synaptic efficacy (g = 3, 5,

5.5). To obtain the same self-reproducing rate for different values

of g the ratio θ/J is adjusted. In Figure 3 there are two rates at

each of which the straight line (dotted), the left-hand side of

equation (20), intersects three curves, the right-hand side of

(20): g = 3 (full lines), g = 5.0 (long-dashed lines) and g = 5.5

(short-dashed lines). As g increases the slope of Pr(ν)/τ at the

intersection decreases. At g = 3 it is essentially as for g = 0 (Fig.

2). At g = 5 both slopes are still larger than unity, because of the

variation of the variance of the local synaptic input upon a

variation of the rate. At g = 5.5 both self-reproducing rates are

stable.

For  low g the low-rate stable self-reproducing solution to

equation (20) is essentially at ν = 0. It is kept away from zero by

the fixed excitatory input from outside the module, which leave

the neurons at extremely low rates. When g crosses its critical

value the state in which all neurons have a spontaneous rate of

several spikes per second, depending on the ratio θ/J, becomes

stable and small variations around this rate are suppressed.

There is an intermediate regime in which the network has

two stable self-reproducing rates, the quiescent state with ν
essentially at 0 and a state with spontaneous rates of several

spikes per second. The lower curve c in Figure 3 represents such

a situation. It corresponds to ν* = 2.3 s
–1

and g = 5.5. Large

enough f luctuations may shift the network from one state to the

other. When the inhibition increases further, the quiescent state

becomes unstable. This is because when  inhibition (i.e. g)

increases, one has to decrease the ratio θ/J to preserve the same

self-reproducing rate. Since the fixed excitatory rate from

outside the module is equal to the internal self-reproducing rate,

the external currents will increase relative to the threshold when

g increases, destabilizing the quiescent state and leaving the state

with spontaneous rates of several spikes per second the only

stable state of the network. The quiescent state becomes

unstable when the external inputs are such that the curve ν →
Pr(ν)/τ has a unique solution ν*. This is the case for the upper

curve c of Figure 3. The self-reproducing rate ν* = 2.3 s
–1

is stable

for g > 5.45, but the quiescent state is stable for g < 5.7. Thus both

states are stable between these two values of g. On the other

hand, the self-reproducing rate ν* = 4.5 s
–1

becomes stable for g >

5.18, and coexists with the quiescent state only until g = 5.35. If

one increases further g, the slope of the curve ν → Pr(ν)/τ at the

self-reproducing rate becomes smaller than –1 and the

self-reproducing rate becomes unstable. (We are in debt for this

comment to an anonymous referee. However, this instability is

an artifact of the discrete time formulation of our SIF neuron.

The realistic, leaky IF neuron is stable for any inhibitory strength

above the critical strength.)

Integrate-and-fire Neurons: Stable Spontaneous Rates

In a network of integrate-and-fire neurons the self-reproducing

rates for both populations are given by the solutions of the

coupled equations

(23)

(24)

in which the means µI and SDs σI are functions of the rates of the

excitatory and the inhibitory neurons, νE and νI, via equations

(15–18). The right-hand sides are

(25)

with ϕ given in equation (7) and τI the time constant of neuron

of type I.

The stability analysis consists of considering the effect of a

uniform displacement of the two rates: (νE,νI) → (νE + δνE, νI +

δνI) in the local module and exposing the conditions for which

both output rates are closer to the self-reproducing values than

the input ones. Details are given in Appendix B. In the following

we discuss a few simple examples in the space of parameters for

which the solution of equations (23) and (24) is stable against

small perturbations.
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Figure 3. Graphical solution for two self-reproducing spontaneous spike rates ν* =
2.3 s–1 (a), 4.5 s–1 (b), and three values of the relative inhibitory efficacy: g = 3 (full
curves), g = 5 (long-dashed curves) and g = 5.5 (short-dashed curves). The (six)
curves represent the function Pr(ν)/τ, the right-hand side of equation (20). The dotted
straight line is the left-hand side. Each ν*, the intersection of Pr(ν)/τ with the straight
line, is obtained for the three values of g by adjusting the ratio θ/J. The two solutions
for ν* are represented by diamonds in the figure. A self-reproducing rate is stable if the
slope of Pr(ν)/τ at the intersection is lower than that of the straight line. Only for g =
5.5 (short-dashed curves) are the solutions stable. Note the similarity of the solutions
corresponding to g = 3 (full curves) with Figure 2.
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Equal Time Constants and Inhibitory Couplings. We start by

taking equal integration time constants for excitatory and

inhibitory neurons, τI = τE, and equal relative inhibitory

efficacies for both types of neurons, JEI/JEE = JII/JIE = g. The

equations for the self-reproducing rates are solved numerically.

Then we carry the stability analysis of Appendix B and find that

the spontaneous rates are stable if excitatory and inhibitory local

inputs approximately balance. In fact, the mean local synaptic

input should  again be slightly dominated by the inhibition.

Hence, the smaller number of inhibitory inputs (20%) must be

compensated either by stronger inhibitory synapses or by

relatively higher inhibitory rates. This is not a very stringent

condition. In hippocampus inhibitory  couplings  are  indeed

more efficient than the excitatory ones (Traub and Miles, 1991),

and there is evidence that inhibitory rates are actually higher

(Simons, 1978; Connors and Gutnick, 1990).

Fast Inhibition. As inhibition grows faster, any perturbation in

the rates in the excitatory network is more easily controlled, and

the network should be more stable. We find that decreasing the

integration time constant of the inhibition relaxes the condition

on the relative inhibitory couplings and on the inhibitory spike

rates. The effect of increasing the rates of the inhibitory neurons

is very similar. We have studied the stability of spontaneous

activity in a network with excitatory rate νE = 2 s
–1

and equal

relative inhibitory efficacy on both excitatory and inhibitory

neurons (JEI/JEE = JII/JIE = g), for three different values of τI = τE,

0.5τE and 0.2τE (10, 5 and 2 ms), varying g and νI. Decreasing the

integration time constant of inhibitory cells has the effect of

increasing the domain of stability of spontaneous activity. At

parity of excitatory rates, the spontaneous attractor will be

stable for lower values of the average inhibitory efficacy or

inhibitory rate. For example, if νI = νE = 2 s
–1

, the critical

inhibitory strength g is 3.53 for τI = 5 ms and 2.24 for τI = 2 ms.

In particular, the spontaneous rates will be stabilized even with

large dominance of excitatory inputs over the inhibitory ones.

This is due to the fact that the inhibition adjusts its rates faster in

case of a perturbation. But as an integration time constant

becomes very small, transmission delays tend to destabilize the

spontaneous activity and the network finds it easier to transit to

the quiescent state. This effect is counterbalanced by an increase

in g or νI. Hence, a rather strong inhibition seems to be required

to obtain a robust spontaneous activity state.

Robustness to Variations of Threshold-to-EPSP Ratio. Figure

4 shows the region of stability of the spontaneous activity upon

varying the threshold-to-EPSP ratios θE/JEE and θI/JIE, for relative

inhibitory efficacies: g = 2, 3 and 5. For each value of g, the

spontaneous activity state is stable below the corresponding

curve. Taking 20 mV for both excitatory and inhibitory

thresholds, θE/JEE = 300 corresponds to an average efficacy JEE =

0.067 mV, while θI/JIE = 50 corresponds to JIE = 0.4 mV. These

values are well within the experimentally reported range

(McNaughton et al., 1981; Komatsu et al., 1988; Thompson et

al., 1988;  Sayer et  al., 1990; Mason et al., 1991). Figure 4

indicates that for the corresponding values of g, the ratio θI/JIE

has to be smaller than θE/JEE (or conversely the average

excitatory synapses have to be stronger on inhibitory cells),

which in turn means that inhibitory cells have a higher rate. A

decrease in g requires a compensating decrease of JEE/JIE, which

implies higher inhibitory spike rates. For example, in a network

with g = 3 (inhibitory synapses on both excitatory and inhibitory

neurons three times as efficient as excitatory ones), θE/JEE ∼ 180

and θI/JIE ∼ 160 (marked by a diamond in Fig. 4), there is a

spontaneous activity attractor with νE = 2 s
–1

and νI = 5.4 s
–1

.

Effect of Variation of the External Currents. We turn next to

the effect of variation of the external currents on the stability of

the spontaneous activity state. We start from the stable state in

which νE = νext, and fix all parameters. Then the external rate νext

is varied, leading to a readjustment of the equilibrium rates in the

network (νE,νI). Figure 5 presents the variation of the excitatory

and inhibitory stable spontaneous rates upon variations of the

external rate νext for fixed parameters. The low rate solution is

stable in the entire range νext between 0 and 5 s
–1

. The inhibition

adjusts itself to the variation of the external rates, leaving the

network in a spontaneous activity state of almost constant

excitatory rates. When the external rate is zero, the network has

another stable solution, the quiescent state νE = νI = 0. However,

a major f luctuation would be required to reach this state.

Global Stability. Global stability can be considered in

different ways. One may consider a sudden fluctuation in the

spontaneous rates of all cells in the cortex. To have stability

against such an eventuality, significantly larger inhibition would

be required. If one allows for such global f luctuations, the

system may also land in the global quiescent state, which is

stable. But that is a very unlikely situation. The more relevant

eventuality would be the spreading of a local f luctuation in rates.

However, from the preceding arguments one may conclude that

Figure 4. Stability region of spontaneous activity, in the space of threshold-to-EPSP
ratios θE/JEE – θI/JIE for three values of the relative inhibitory efficacy g (indicated in the
figure). For each value of g the low rate state is stable below the corresponding curve.
The diamond represents the numerical example discussed in text.

Figure 5. Dependence of spontaneous activity on variation of external afferents.
Stable rates νE (full curve) and νI (dashed curve) as a function of the external rate νext.
: νE = νext. Fixed network parameters θE/JEE = 136, θI/JIE = 85, g = 4, τI = 0.4τE.
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our system is stable against such spreading. If we consider a

particular module, and the rates f luctuate in a second module

which has excitatory projections into the first, the local

inhibition in the first module would be sufficient to suppress the

effect at a cost perhaps of a small change in the inhibitory rate.

Learning and Selective Activity

The next major issue is whether a network characterized by the

same set of parameters defining neuronal physiology and

anatomy, which provided a stable spontaneous activity (even at

relatively high rates), can sustain stable local delay activity by the

mere modification of synapses between excitatory neurons.

We imagine the local, structured  distribution of  synaptic

efficacies to have been generated by stimuli arriving at the

module and being learned (e.g. Amit and Fusi, 1994; Amit and

Brunel, 1995). Each stimulus activates a given subset of cells in

the local module significantly above the spontaneous level (the

visually responsive cells) and leaves the others at spontaneous

rates (i.e. binary stimuli). The excitatory synapses in the local

network have Hebbian plasticity: a pair of neurons simul-

taneously activated by a given stimulus will enhance the efficacy

of the connecting synapse while a pair of neurons with

anti-correlated activities reduce  the efficacy of  the synapse

connecting them. All synapses involving inhibitory neurons

remain unstructured. This is admittedly a very schematic

representation of learning, but it suffices for the discussion of

the issue raised here which concerns the possible stability of

local,  selective activity attractors on the background of the

global spontaneous activity.

Suppose that p stimuli had been learned. Each stimulus

activates an equal fraction f (coding level or sparseness) of the

excitatory neurons in the local network. In order to obtain an

intuition into the behavior of a network in which stimuli choose

their selective neurons randomly and independently, we revert

to an approximate situation in which stimuli are subject to the

constraint that no neuron responds to more than one stimulus

(non-overlapping stimuli). This case is amenable to detailed

analysis (Brunel, 1994) and provides a reasonable approximation

for the unconstrained case, provided the coding level is low and

the number of learned stimuli is not too high, i.e. we must have

fp < 1. The analysis of the case of non-overlapping stimuli is

simplified by the fact that the excitatory network can be divided

into two subpopulations: one of pfN neurons excited by one of

the p learned stimuli (selective neurons); and the remaining (1 –

pf)N non-selective neurons, i.e. those not activated by  any

stimulus. We take f = 0.01, which may correspond to the

situation in IT cortex (e.g. Brunel, 1994), and p = 50. For the

same values of p and f, if stimuli were composed of neurons

selected randomly and independently, ∼9 of the neurons in the

module would be activated by more than one stimulus.

The distribution of excitatory synapses on neurons of each of

the two population is as follows.

Selective Neurons

Each of these neurons receives ∼fxCEE = 100 synaptic contacts

from other neurons in the subpopulation which is activated by

the same stimulus. These synaptic efficacies are characterized by

a new (potentiated) probability distribution P+ (J) with mean J+ >

J, where J (= JEE) is the average, excitatory, unstructured synaptic

efficacy sustaining the spontaneous activity. The enhanced mean

of this distribution expresses the potentiation (LTP) due to

coactivation of pre and post synaptic neurons by the same

stimulus (e.g. Bliss and Collingridge, 1993). The structured local

synaptic efficacies have an SD J+∆. A selective neuron has (1 –

f)xCEE synaptic contacts with other excitatory neurons which

are  not excited by this stimulus. These  neurons  are either

neurons selective for a different stimulus or non-selective

neurons. The corresponding synaptic contacts are characterized

by a distribution P–(J), with mean J– < J and SD J–∆, expressing

depression (LTD) in these synapses, due to anti-correlation of the

activities of pre- and post-synaptic neurons when the stimulus is

present (e.g. Artola and Singer, 1993).

Non-selective Neurons

These neurons receive pfxCEE = 5000 contacts from selective

neurons, which are drawn from the depressed distribution P–(J).

They  also receive (1 – pf)xCEE = 5000 contacts from other

non-selective neurons. These synapses are not affected by

learning and therefore are drawn from the original distribution

P(J).

The distributions P± characterize the learning of the set of

stimuli in the network. We suppose that the mean excitatory

synaptic efficacy in the entire module is not changed by the

learning process. So on average synaptic depressions compen-

sate for potentiations (see in this context Stanton and Sejnowski,

1989; Amit and Fusi, 1994). This is expressed as

which is a statement that in the local module the mean

potentiation plus the mean depression plus the mean un-

modified efficacies gives the pre-learning mean. J– can therefore

be expressed as a function of J+ , i.e.

(26)

Usually, the performance of an attractor network, in terms of

the number of memories it can associatively recall, increases as

the coding level decreases (Willshaw et al., 1969; Tsodyks and

Feigelman, 1988; Amit and Fusi, 1994). However, in a network

with a fixed, finite connectivity one cannot lower f too much,

since a selective neuron of a given stimulus will eventually get

too few inputs from the other selective neurons in the same

stimulus. For a recurrent connectivity of 10 000 and f ∼ 0.01,
εϖερψ νευρον ρεχειϖεσ ∼100 potentiated synaptic contacts from

other selective neurons, which is a number that may suffice to

keep activity going. This is an attractive coincidence since, as

was mentioned above, both numbers are biologically plausible.

We may now investigate the effect of learning, represented by

the distributions P±(J), on the stable rates sustained by the local

module. We  consider  two situations: (i) no stimulus-related

activity in the local network, corresponding to stimulation by an

unfamiliar stimulus; and (ii) stimulus-related persistent activity

in the local network, corresponding to stimulation by a familiar

stimulus. In both cases we consider the situation following the

removal of the stimulus, much like in the delay period of delayed

response experiments (e.g. Miyashita and Chang, 1988; Wilson

et al., 1993).

What makes the problem amenable to detailed solution is the

combination of the facts that (i) each neuron’s behavior is fully

determined by the mean and the variance of the synaptic input

to the depolarization at the cell body and (ii) that when there is

no sharing of selective neurons between different stimuli, both

quantities  are uniform in each  class of neurons and easily
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computable. To determine the stable rate distributions in

different stimulation scenarios one computes the mean and the

variance of the distribution of the synaptic inputs arriving to a

neuron of every type in the local network. Then one solves the

equations for self-reproducing rate distributions, i.e. those rates

in the different populations of neurons in the network that when

acting as inputs to neurons give rise to the same set of rates.

Finally, one checks the stability of the solution. The expressions

for the means and variances, in terms of the rates in the various

populations, are given in Appendix C.

No Stimulus-related Activity in the Local Network. The ques-

tion is whether following learning a solution exists in which all

selective neurons are equivalent and all non-selective neurons

are equivalent in terms of rates and inputs. Selective neurons

would have equal rates ν+ and receive equal inputs of mean µ+

and SD σ+ . Non-selective neurons would have rates ν0 and inputs

with mean µ0 and SD σ0. Inhibitory neurons would have rates νI

and input with mean µI and SD σI. The stable rates are given by

the system of three coupled equations

(27)

(28)

(29)

where φE,I are the transduction functions, given by equation

(25), for the excitatory and the inhibitory neurons respectively.

The means µ+, µ0, µI and the SDs σ+, σ0, σI depend in turn on the

rates ν+, ν0, νI via equations (42–46) of Appendix C. This makes

the above equations a closed set of equations for the rates in the

different populations.

Equations (27–29) are studied numerically for the three stable,

self-reproducing rates ν+, ν0, νI. The parameters are τI = 0.2τE, JEI

= 1.5 J, JIE = JII, θE ∼ 560 J, θI ∼ 140 JIE. (Recall that the first

subscript is for the type of the post-synapstic cell and the second

for the pre-synaptic.) Prior to learning J+ = J, there is stable

spontaneous activity of νE = 3 s
–1

and νI = 4.2 s
–1

.

Next the solutions of these equations, ν+, ν0, νI, are studied as

a function of J+/J, the enhancement due to learning of the mean

synaptic efficacy. The observed stable rates for the three

populations of neurons are plotted as full curves in Figure 6.

Note that as J+/J increases, the stable rate of the selective neurons

increases, from 3 s
–1

at J+/J = 1 (no learning) to 5.5 s
–1

at J+/J = 5

(the average LTP synaptic value is five times the background

one). Correspondingly, there is a decrease of the rates of the

non-selective neurons, which become as low as ν0 = 1 s
–1

when

J+/J = 5. The inhibitory neurons have a milder variation of their

rates, and stay between 4 and 5 s
–1

.

We conclude that the spontaneous attractor is robust against

the synaptic variations induced by learning, though it acquires

some structure on the local level. The spontaneous rates carry

some indication of the learning history. It is a precursor of the

impending selective attractor. Neurons that had been strongly

activated by external stimuli during learning will have enhanced

rates, while those that have not been activated at all will have

their rates depressed relative to the bare spontaneous activity.

Note, however, that the enhanced spontaneous activity is

non-selective. In other words, neurons partaking in any of the

stimuli will have somewhat elevated spontaneous rates

simultaneously, irrespective of the stimulation.

Stimulus-related Activity in the Local Network. We now test

the option that following the presentation and removal of a

stimulus  similar to one previously learned the network can

sustain a stimulus-selective delay activity. In the simplest case

such a selective delay activity state will consist of the subset of

neurons responsive to the particular stimulus maintaining an

elevated spike rate. In this case there may be four types of rates:

of neurons selective of the presented stimulus, νsel; of neurons

selective of other learned stimuli, ν+ ; of non-selective excitatory

neurons, ν0; and of inhibitory neurons, νI.

The stable, self-reproducing rates are determined by the stable

solutions of the four coupled equations

(30)

(31)

(32)

(33)

in which the rate in each population is determined by the mean

and the variance of the corresponding input, itself given in terms

of the four rates. The explicit expressions are given in Appendix

C. When J+ is close to J, the only solution of equations (30–33)

ν φ µ σ+ + += E ,b g

ν φ µ σ0 0 0= E ,b g

ν φ µ σI I I I= ,b g

ν φ µ σsel sel sel= E ,b g

ν φ µ σ+ + += E ,b g

ν φ µ σ0 0 0= E ,b g

ν φ µ σI I I I= ,b g

Figure 6. Stable, self-reproducing rates for selective (ν+ and νsel), non-selective (ν0)
and inhibitory (νI) neurons versus J+/J, the relative mean synaptic potentiation due to
learning. To the left of the dotted vertical line is a single solution (full curves) —
spontaneous activity. To the right is an abrupt development of a second stable solution
(dashed curves) — selective delay activity. The group of neurons selective for the
current stimulus has a higher, selective rate, marked νsel. The bottom figure is a
close-up of the lower part of the top figure. The spontaneous activity, non-selective
state, coexists with the selective one to the right of the dotted line. To the left of the
dotted line the network sustains the spontaneous state following presentation and
removal of any stimulus. To the right of the dotted line, if the stimulus is similar to one
of those learned, the network will sustain a selective delay activity following removal of
the stimulus. If the stimulus is unfamiliar, the network will return to the spontaneous
state.
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are the spontaneous rates (ν+ *,ν0*,νI*), which were found as

solutions of equations (27–29) above, i.e.

When J+/J crosses a critical value (∼3.78), equations (30–33)

develop abruptly an additional solution over and above the

spontaneous rate. The full scenario is displayed in Figure 6,

where all the stable frequency solutions are plotted as a function

of the relative potentiation due to learning J+/J. To the left of the

dotted vertical line, the critical value of J+/J, there is a single

stable solution for each of the three neuron types: selective,

non-selective excitatory and inhibitory. In the delay activity

there is no selectivity to any particular stimulus.

Upon crossing the dotted vertical line there is a bifurcation: a

new branch appears. Neurons selective to the particular afferent

stimulus develop an alternative stable rate, represented by the

dashed curve in the top figure marked νsel. This selective rate is

maintained by the learned synaptic structure after removal of the

stimulus. It varies in a rather sensitive way with J+/J, from 17 s
–1

at J+/J ∼ 3.78 to >50 s
–1

when J+/J = 5. The neurons in the other

classes remain at low rates, shown in the dashed curves in the

bottom figure, which expands the low rate part of the top figure.

For these neurons, the main difference with the unselective

attractor is that the rates of neurons selective to other learned

stimuli (ν+) are significantly reduced. Non-selective and

inhibitory neurons are hardly affected by the presence or

absence of the selective structured activity. This is because

selective activity affects only mildly the overall activity in the

excitatory network, due to the fact that the coding level is low,

and only 1% of the excitatory neurons have significantly higher

activity, combined with the fact that the selective activity is not

much  higher than the spontaneous  rates.  For J+/J ∼ 4, the

selective rates are between 20 and 30 s
–1

, and thus only 4–6

times the spontaneous rates.

At the risk of repetition, we recall that both types of states —

spontaneous and selective — are stable. Which of the two is

actually manifested in the local module depends on how the

module was stimulated. If the stimulation was similar to one of

the memories, the high selective branch is maintained after the

stimulus is removed. If the stimulation was uncorrelated with any

of the previously learned stimuli, the network relaxes to the

spontaneous activity state.

This scenario takes place either if single synapses are

potentiated gradually or if synapses have only discrete stable

states but on each presentation only a fraction of the synapses

that should be potentiated are actually potentiated. For example,

if each synapse has two stable states, J and JP, and learning

dynamics is stochastic (Amit and Fusi, 1994; Amit and Brunel,

1995), then the resulting distribution of synapses has a mean

where cP is the fraction of actually potentiated synapses out of

the total which Hebbian learning would have potentiated had it

been deterministic. Thus, if the potentiated efficacy is JP/J = 5,

and the critical value for the appearance of the selective

attractors is J+/J = 3.78, we need a fraction cP = 0.70 of

potentiated synapses to obtain the corresponding attractors.

The above observation could be either a prediction for

cortical regions, such as IT or pre-frontal cortex, or a test of the

learning dynamics: if LTP takes place gradually, then during the

process of training there should appear a phase in which

neurons selective of any stimulus have enhanced spontaneous

activity. This   spontaneous state would be reached after

presentation of any stimulus in a delayed match-to-sample

experiment. But this enhancement of the spontaneous activity

during learning depends on the presumed learning process. In

the present picture any selective neuron sees an increase of the

average excitatory synaptic efficacy on its dendrites upon

learning. This is related to the requirement that the synaptic

strength averaged over the whole network remain constant

during learning, and to  the  resulting fact that  efficacies of

synapses on non-selective neurons decrease. If during learning

the average synaptic efficacy remained constant on the dendrites

of every individual neuron, the spontaneous activity of neurons

would not be modified during learning. At the other extreme, if

learning decreases the mean average synaptic strength, because

depression is on average stronger than potentiation, the

spontaneous activity of selective neurons would decrease with

learning. In any case the observation of the evolution of the

spontaneous activity during learning would give rather

interesting indications on the learning dynamics.

It is rewarding to note that the range  of values  of both

selective and spontaneous rates includes rates observed in

experiments in IT cortex (Miyashita, 1988; Miyashita and Chang,

1988; Sakai and Miyashita, 1991) and in prefrontal cortex

(Wilson et al., 1993).

Discussion
The present study integrates the structureless spontaneous

neural activity into the framework of attractor neural networks.

It makes spontaneous activity into another stable collective

property of a system of interacting neurons. The particular

stable state of spontaneous activity differs from usual attractors

previously considered in neural dynamics first by its global

nature, second by its extra stability and third by the fact that it

can sustain, on top of itself, local structured metastable states,

the learned selective delay activity distributions.

Even if the present description does not def lect all criticisms,

some of which we will ourselves suggest below, we consider it a

significant step forward in the long road to the construction of

neurobiologically plausible neural network dynamics, testable

and at the same time expressing cognitively related tokens —

delay activities in cognitively performing animals.    It

demonstrates that no external agent is required to maintain this

pervasive, low rate activity and that selective delay activity can

coexist with spontaneous activity even if the rates in both states

are close. It connects levels of spontaneous activity to learning

and identifies the appearance of selective delay activity as a

bifurcation caused by the quantitative level of learning. To our

knowledge this ensemble of properties in a single framework is

shown here for the first time.

All the above requires an interplay between excitation and

inhibition. But that interplay is rather robust: it is unstructured;

it has a wide scope in the space of neural and network

parameters; and the functional domain of parameters includes

biologically plausible values.

Other models of networks of interacting excitatory and

inhibitory neurons have been studied (e.g. Amari, 1972; Wilson

and Cowan, 1972). What is new in the system analyzed here is

that (i) the dynamical equations governing each population are

obtained from a well-defined model of the single neuron, i.e. the

integrate-and-fire neuron; (ii) anatomy and physiology are related

to realistic cortical parameters; (iii) it exhibits both spontaneous

as well as selective states; and (iv) the resulting stable states are

ν ν ν ν ν ν νsel = = = =+ + *, *, *0 0 I I

J c J c JP P P+ = + −1b g
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identified and confronted quantitatively with ‘states’ observed in

neurophysiological experiments in performing primates. In fact,

even in previous models of networks of spiking neurons

exhibiting selective working memory properties of cortical

neurons (e.g. Amit et al., 1990; Zipser et al., 1993), the problem

of spontaneous activity was not considered.

Tsodyks and Sejnowski (1995) have recently argued that the

dynamics of a network of integrate-and-fire neurons cannot be

accurately described by a mean-field description because of the

importance of the temporal f luctuations of the depolarization in

the spike dynamics. Here the mean-field approach was extended

to include precisely these f luctuations, in order to get a consist-

ent picture of spontaneous and structured activity in a neuronal

module in a cortical environment.

Softky and Koch (1993) have raised the issue of the variability

of inter-spike intervals in cortical neurons. They argue that an

integrate-and-fire neuron receiving a large stochastic input will

have a very regular firing pattern, at odds with experimental

evidence in primary visual cortex. However, they considered

exclusively the regime in which rates are very high, of the order

of 100 s
–1

. Here the situation is different, since in the stable

states we consider firing rates are very low compared with the

inverse neuronal time constants. In this regime spikes are due

mainly to f luctuations, and thus firing will be naturally very

irregular, Poisson-like.

A number  of issues still remain open. We start with the

seemingly lighter ones. The study has focused on the stationary

states of the dynamics and their stability. We have also simulated

the current-rate dynamics for a network of 2000 neurons. This

network was considered as   a   local module, the global

environment being introduced by hand. The findings confirm

the reported results. The main difference between the results of

the simulated dynamics and the above analysis is that in the

simulation the rates in populations of functionally similar

neurons are not uniform. Rather, in each population there is a

wide distribution of rates around a mean that is close to the rate

determined by the analysis. This is due to the fact that in the

simulations we allowed for variability in the connectivity on

different neurons. This situation can also be covered by the

analysis but for lack of space will be reported elsewhere. These

wide rate distributions are, of course, more realistic.

Deeper issues are the full linearity on the input side of our

neurons and the assumed relation of the time constants.

Concerning the first issue, had we had our choice the scenario

would be that when a couple of hundred spikes arrive

independently each 10 ms and are scattered randomly on the

dendrites, the non-linear cable effects are negligible. In fact, it

has been argued (Softky and Koch, 1993; Bernander et al., 1994)

that in this situation the simple leaky integrate-and-fire neuron

and a complex reconstructed layer V pyramidal cell have similar

temporal dynamics.

Even in the presence of non-linearities it may be the case that

one can approximate the distribution of depolarization at the

soma by a Gaussian, whose first moments can be calculated as a

single-valued function of the afferent rates. The calculation then

can be redone to obtain the conditions for self-reproduction and

stability, though the resulting conditions may be different. Such

is the case if the underlying synaptic dynamics includes reversal

potentials but  no dendritic geometrical structure. We have

indications that in that case the system is even more stable, i.e.

the acceptable range of parameters expands. Beyond the

stabilization of the spontaneous activity, the depolarization due

to the learned structured stimuli can be considered marginal and

hence linear, in the spirit of Amit and Tsodyks (1992).

Concerning the issue of the finite time constants associated

with the synaptic conductance changes, we have preliminary

results from analysis and from simulations indicating that their

introduction does not have severe effects on the stability of the

network.

As mentioned in the introduction, the above analysis holds in

the absence of correlations between neuronal spike activities.

This question cannot be investigated in the framework of the

theory presented here, because the independence of the spike

emission  processes  underlies the conversion from spikes to

rates. The issue is being investigated by extensive simulations.

Though not selective, spontaneous activity has some im-

plications for computational phenomena. It has the advantage of

placing cortical neurons close to threshold, rather than at their

resting potential. Thus the response of a spontaneously active

system to a stimulus will be much faster than the one of a system

at rest. Furthermore, since neurons responsive to recently

learned stimuli have higher spontaneous activity, the response of

the system to a learned stimulus will be even faster than it is for

unfamiliar stimuli. This suggests that spontaneous activity may

play a major role in the speed of processing in cortex.

The network, upon stimulation by a familiar, learned stimulus,

goes into the corresponding selective delay activity (attractor)

state, rather quickly. In principle, this state can persist for an

arbitrary long time, even in absence of the eliciting stimulus.

There are several  natural  ways  in  which the network may

abandon  a given selective attractor. It will happen upon a

presentation of a strong new stimulus. A new stimulus

destabilizes the attractor, and the network will switch from one

structured state to  another, corresponding to the incoming

stimulus. It is the effect of the interplay between excitation and

inhibition: the neurons belonging to the foreground of the new

stimulus provoke a higher inhibitory activity, which in turn

‘turns off’ the activity of the neurons belonging to the

foreground of the previous stimulus (see also Amit and Brunel,

1995). Another scenario for terminating a delay activity is a

variation in the level of non-selective external afferents. In this

case the network will tend to go into a spontaneous activity

state. This may be a mechanism to implement attention. Finally,

if learning has not been strong enough, a network with a

relatively low fraction of cells with enhancd rates may leave an

attractor due to a f luctuation. It may then find itself in a

spontaneous activity state or in another learned attractor. As

learning proceeds, the time for such a transition would become

longer. This again is an experimental prediction, testable by

single unit recordings.

Selective delay activity in various working memory tasks has

been  observed both  in  unimodal  (e.g. IT cortex for visual

stimuli) and multimodal (e.g. prefrontal cortex)  association

cortices (Fuster, 1995). The behavioral role of delay activity

appears rather clear in the experiments on the oculomotor

delayed-response task (Goldman-Rakic et al., 1990; Williams and

Goldman-Rakic, 1995) as well as in other tasks implying

retention of the cue information (Fuster, 1995). The observation

by Miyashita (1988) that behavioural performance is the same

for new stimuli (for which he finds no delay activity in IT cortex)

as it is for learned ones (for which delay activity in IT cortex is

present) has raised some question as to the behavioral relevance

of delay activity in the delayed match-to-sample tasks. It should

be pointed out that in the latter tasks the correlation between the

level of delay activity, when present, and the correct
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performance has not been measured. On the other hand, when

delay activity has not yet been formed, the task may have to be

performed by alternative strategies (e.g. Baylis and Rolls, 1987).

There may, for example, be other cortical areas where delay

activity is learned in a single shot, while delay activity in IT takes

a large number of trials to form. Yet somewhere something must

keep active the information of the last stimulus in a delay task

(e.g. Amit, 1995).

Appendix A: Stability in Network of Simplified Neurons
In this paper α ∼ 2 (output rates of the order of 1 s–1), one can

approximate Pr(ν) (equation 9), by (Abramowitz and Stegun,

1970)

with α = (θ – µ)/σ (equation 5). The equation for the

self-reproducing rate is

The derivative of Pr(ν) is

(34)

and the derivative of α(ν) with respect to ν is given by

(35)

To calculate the derivatives of µ and σ2
, we note that both are

a sum of two contributions — the local one, which is linear in ν,

and the external one, which is fixed (see equations 10 and 11 for

excitation only, and equation 19 when inhibition is included).

Thus νdµ/dν = µl, the mean of the local input, and νdσ2
/dν = σl

2
,

the variance of the local input, and we have from equations (34)

and (35)

(36)

In the absence of inhibition, µl = xCντJ is of order of a few

hundred J, while σ is of order a few tens. On the other hand, the

two variances σl
2

and σ2
may differ only by a factor of 2, and α ∼

2. So the first term on the right-hand side of equation (36)

dominates since µl > > σ.

Appendix B: Stability in IF Network with Inhibition
The dynamic behavior of the neurons is determined by the mean

and the variance of the depolarization. In fact (Tuckwell, 1988),

one can obtain the mean interspike interval (the inverse rate) in

terms of the mean and variance of the ‘free’ depolarization, i.e. in

the absence of a threshold. In a steady state the mean and the

variance are directly deducible from the afferent rates. If

excitatory and inhibitory inputs are independent, the mean of

the depolarization is the balance of the depolarizing and

hyperpolarizing   terms.   The variance is   the sum   of the

depolarizing and hyperpolarizing input variances (equations

15–18). In this appendix we choose simplifying units, taking the

average EPSP on both types of neurons JEE = JIE = 1, i.e

depolarizations are measured in units of the average EPSP on the

corresponding neuron. We take τE = 1, so time is measured in

units of τE. The evolution of the moments µ[VE] and σ[VE]
2

is

given by

(37)

and

(38)

and we have similar equations for the inhibitory neurons.

These are minor extensions of equations 9.146 and 9.147 of

(Tuckwell (1988). Note that in equation (7) it is σE = √2σ[VE]

that enters. We rewrite equation (38) in terms of these

quantities, e.g.

(39)

The effect of the perturbation in the rates (νi) → (νi + δνi) on

the moments µ and σ is determined from these equations as

for the excitatory neurons, and for the inhibitory cells

The shifts in the rates are given via the corresponding φi of

equation (25), i.e.

taken at the self-reproducing rates satisfying equations (23) and

(24). These solutions will be stable if all the eigenvalues of the

following matrix have negative real parts

Pr ν
πα ν

α ν
b g

b g
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(40)

in which

In the simplified case τI = 1 (equal inhibitory and excitatory

time constants) and JEI = JII = g (equal  average inhibitory

efficacies on both types of neurons), we have σE = σI, the matrix

(40) has two simple eigenvalues, –1 and –2, and the other two

are negative if

(41)

which is the extension of equation (21) in the presence of

inhibition. If, for example, θE = θI, excitatory and inhibitory

transduction functions become equivalent and equation (41)

becomes

In other cases one has to find numerically the eigenvalues of

(40).

Appendix C
Since the theory depends only on the mean and the variance of

the input to neurons of every class, either for the spontaneous

attractor or for selective delay attractors, we provide these

quantities in terms of the relevant spike rates.

No Stimulus-selective Activity in the Local Network

The mean recurrent excitatory synaptic input to a selective

neuron in its integration time τ is the sum of three contributions:

xCEEfJ+ ν+ τ, from other neurons selective for the same stimulus;

xCEE(p – 1)fJ–ν+ τ, from neurons selective for other stimuli; and

xCEE(1 – pf)J–ν0τ, from non-selective neurons. After adding the

external excitatory afferent (with mean µE,ext and SD σE,ext) and

the local inhibition (with mean µEI and SD σEI), the total average

synaptic input, in an interval corresponding to the integration

time of the membrane potential, becomes

(42)

and its variance is

A non-selective neuron receives xCEE[pfJ–ν+]τ recurrent

excitation from selective cells; xCEE (1 – pf)Jν0τ from other

non-selective cells. Its total mean input is:

(43)

and

(44)

An inhibitory unit receives a mean synaptic input of

(45)

with variance

(46)

where νE is the average rate of an excitatory neuron in the local

network, i.e.

Stimulus-selective Activity in the Local Network

The mean synaptic input to a neuron selective to the present

stimulus, in an interval corresponding to the integration time τ,

is:

where the different terms correspond to the synaptic

contributions coming from, respectively, the neurons selective

to the same stimulus; the other   selective   neurons; the

non-selective excitatory neurons in the module; the input from

spontaneous activity external to the module; and the inhibitory

input. For the corresponding variance we have

Neurons selective of other stimuli have a mean input:

and a variance

The mean synaptic input to a non-selective neuron is:

− + − −

F
HG

I
KJ

− +
F
HG

I
KJ

F
HG

I
KJ

F
HG

I
KJ

− − −

F
HG

I
KJ

F
HG

I
KJ

F
HG

I
KJ

−
F
HG

I
KJ

F
HG

I
KJ

F

H

G
G
G
G
G
G
G
G
GG

I

K

J
J
J
J
J
J
J
J
JJ

1

2

1

2

2 2

2

1

2

xX xY J X J Y

xX xY J X J Y

xX xY J X J Y

xX xY J X J Y

E E EI I EI I

E
E

E
E

EI I
E

EI I
E

E E I II I II I

E
I

E
I

II I
I

II I
I

λ
σ

λ
σ

λ
σ

λ
σ

τ

λ
σ

λ
σ

λ
σ τ

λ
σ

b g

X C Y C i E Ii i
i

i i
i= = =∂φ

∂µ
∂φ
∂σ

; ; ,

xX gX xX g Y xg g X Y X YE I E I E I I E− + + − + − <2 1
2

1b ge j
λ
σ

xC gC xC g CE I E I− ′ + + ′ <b g e jφ φ λ
σµ σ

2

2
1

µ τ ν ν

µ µ

+ + − + −= + − + −

+ −

2
01 1xC fJ p fJ pf JEE

EI

b gd i b g

Ε,ext

σ λ τ ν ν σ σ+ + − + −= + − + − + +2 2 2 2
01 1xC fJ p fJ pf JEE E EIb ge j b g ,ext

2

µ τ ν ν µ µ0 01= + − + −− +xC pfJ pf JEE E EIb g ,ext

σ λ τ ν ν σ σ0
2 2 2

0
21xC pfJ pf JEE E EI− + + − + +b g ,ext

2

µ τ ν µ µI IE IE I E I IIxC J= + −,ext

σ λτ ν σ σI I IE IE E I IIxC J2 2 2= + +,ext
2

ν ν νE pf pf= + −+ 1 0b g

µ τ ν ν ν

µ µ

sel sel

ext

= + − + −

+ −

+ − + −xC fJ p fJ pf JEE

E EI

1 1 0b g b g

,

σ λ τ ν ν ν

µ µ

sel
2

sel

ext

= + − + −

+ −

+ − + −xC fJ p fJ pf JEE

E EI

2 2 2
0

2 2

1 1b g b g

,

µ τ ν ν ν

µ µ

+ sel

ext

= + + − + −

+ −

− + − + −xC fJ f J p J pf JEE

E EI

2 1 0b g b g

,

σ λ τ ν ν ν

σ σ

+ − + − + −= + = − + −

+ −

2 2 2 2
0

2

2 1xC fJ f J p J pf JEE

E EI

sel

ext
2

b g b g

,

µ τ ν ν ν

µ µ

0 01 1= + − + −

+ −

− +xC fJ p pf JEE

E EI

sel

ext

b g b g

,

250 Spontaneous and Selective Activity • Amit and Brunel



with variance:

Finally, an inhibitory neuron has its mean input and variance

given again by equations (45) and (46), but with νE replaced by

νE = f[νsel + (p – 1)ν+ ] + (1 – pf)ν0.
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