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Spontaneous fluctuations are a hallmark of recordings of neural
signals, emergent over time scales spanning milliseconds and tens
of minutes. However, investigations of intrinsic brain organization
based on resting-state functional magnetic resonance imaging have
largely not taken into account the presence and potential of tem-
poral variability, as most current approaches to examine functional
connectivity (FC) implicitly assume that relationships are constant
throughout the length of the recording. In this work, we describe
an approach to assess whole-brain FC dynamics based on spatial
independent component analysis, sliding time window correlation,
and k-means clustering of windowed correlation matrices. The
method is applied to resting-state data from a large sample
(n= 405) of young adults. Our analysis of FC variability highlights
particularly flexible connections between regions in lateral parietal
and cingulate cortex, and argues against a labeling scheme where
such regions are treated as separate and antagonistic entities.
Additionally, clustering analysis reveals unanticipated FC states that
in part diverge strongly from stationary connectivity patterns and
challenge current descriptions of interactions between large-scale
networks. Temporal trends in the occurrence of different FC states
motivate theories regarding their functional roles and relationships
with vigilance/arousal. Overall, we suggest that the study of time-
varying aspects of FC can unveil flexibility in the functional coordi-
nation between different neural systems, and that the exploitation
of these dynamics in further investigations may improve our under-
standing of behavioral shifts and adaptive processes.
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Introduction

Assessment of functional connectivity (FC) from functional
magnetic resonance imaging (fMRI) time series, particularly
during resting-state/task-free periods, has revealed a great
deal of knowledge about the macro-scale spatiotemporal
organization of the brain. Based on the correlations between
intrinsic low-frequency oscillations (Biswal et al. 1995; Cordes
et al. 2001) mediated by underlying structural connectivity
(Honey et al. 2009), connectivity analysis has shifted focus
away from merely localizing activations and deactivations and
toward characterization of coactivation patterns, that is,
network identification. A number of intrinsic connectivity net-
works (ICNs) are now widely recognized, in particular the
default-mode network (Raichle et al. 2001; Buckner et al.
2008), ventral and dorsal attention networks (Corbetta and
Shulman 2002; Fox, Corbetta et al. 2006; Vincent et al. 2008),
and salience network (Seeley et al. 2007), and the

relationships between them have been intensely studied in
basic and clinical cognitive neuroscience. Recent work
suggests a more refined and fine-grained parcellation of these
large-scale networks into a multitude of smaller constituents
(Kiviniemi et al. 2009; Abou-Elseoud et al. 2010; Allen et al.
2011), and also shows that these networks are not conditional
upon a task-free resting state but are equally involved in task
performance (Calhoun et al. 2008; Smith et al. 2009). Such
substructure reveals the modular organization of different
systems, with communication “hubs,” in graph theoretical
terms (Hagmann et al. 2008; Buckner et al. 2009). This dra-
matically different view on aspects of brain function may in
turn help improve diagnostic relevance for neuropsychiatric
disorders, in particular where activation differences are subtle
(Fornito and Bullmore 2012).

Despite such progress, we argue that the assessment of FC
has been limited, in large part, by an implicit assumption of
spatial and temporal stationarity throughout the measurement
period. While this assumption is convenient, in that it keeps
whole-brain connectivity analysis from becoming vastly more
complex, it also unfortunately represents a gross oversimplifi-
cation. Spontaneous/intrinsic fluctuations of activity and con-
nectivity have long been appreciated in electrophysiological
recordings of single cells, local fields, and surface electroence-
phalograms (EEGs). These fluctuations have been exploited
in studies where high temporal resolution allows trial-by-trial
exploration of the dynamics and adaptability of cognitive pro-
cesses (Arieli et al. 1996; Makeig et al. 2004; Onton et al.
2006), and are also increasingly employed in single-trial ana-
lyses of task-based fMRI studies (e.g., Debener et al. 2006;
Fox, Snyder et al. 2006; Eichele et al. 2008; Sadaghiani et al.
2009; Coste et al. 2011). Dynamics are potentially even more
prominent in the resting state, during which mental activity is
unconstrained. It is well established that individuals freely
engage in several types of mental activity during resting
periods (e.g., Delamillieure et al. 2010), and that the predomi-
nance of activity (e.g., imagery or inner language) affects FC
and modular organization throughout the brain (Doucet et al.
2012). Relatively subtle modulations in cognitive load, for
example, by instructing participants to keep eyes closed,
open, or fixated, alter the spectral content of spontaneous
activity and patterns of FC throughout subcortical nuclei, sen-
sorimotor cortex, and default-mode regions (McAvoy et al.
2008; Yan et al. 2009; Wu et al. 2010). More straightforward
attempts to modulate internal activity, such as requesting that
individuals remember the events of their day or silently recall
song lyrics, also result in pronounced changes in whole-brain
FC, with differences sufficiently large and robust to permit
highly accurate classification of cognitive states (Shirer et al.
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2012). Finally, explicit investigations of resting-state FC dy-
namics have unambiguously demonstrated the time-varying
nature of both connectivity strength and directionality (i.e.,
positive or negative) (e.g., Chang and Glover 2010; Kiviniemi
et al. 2011; Hutchison et al. 2012), with indications that cap-
turing this variability may engender new understanding of the
FC differences found in neuropsychiatric diseases such as Alz-
heimer’s dementia (Jones et al. 2012), autism (Starck et al.
2012), and schizophrenia (Sakoğlu et al. 2010).

Considering the strong evidence for fluctuations in FC, how
then should we best investigate spontaneous variations in the
framework of a large group study? In contrast to investi-
gations with task designs or paced experimental manipula-
tions, the variety of mental states experienced during rest and
the transitions between them cannot be specified a priori.
Stable connectivity patterns and change points must be
learned from the data directly, and formal models for this
process are just being developed (Cribben et al. 2012).

In this article, we describe a simple data-driven approach to
assess FC dynamics based on established techniques, includ-
ing spatial independent component analysis (ICA), sliding
time-window correlation, and k-means clustering of windowed
correlation matrices. Group ICA (Calhoun et al. 2001) is used
to decompose multisubject resting-state data into functionally
homogeneous regions (Kiviniemi et al. 2009; Abou-Elseoud
et al. 2010), enabling a whole-brain analysis without resorting
to atlas-based regions of interest that may merge distinct areas
(e.g., see Shirer et al. 2012) or fail to capture intersubject
spatial variability (Allen et al. 2012). Time-varying FC is esti-
mated by computing correlations between component time
courses (TCs; Jafri et al. 2008) using a series of sliding
windows (Sakoğlu et al. 2010). We then evaluate the degree of
variability in resulting FC time series to identify brain regions
with particularly variable (or flexible) connections. Lastly, we
use k-means clustering to identify patterns of FC that reoccur
in time and across subjects (Lloyd 1982). We describe these
clusters as “FC states” in a conceptual analogy to EEG micro-
states, short periods during which scalp topography remains
quasi-stable (Lehmann 1990; Pascual-Marqui et al. 1995). The
FC states observed here are highly replicable and in part
diverge strongly from stationary connectivity patterns, challen-
ging current descriptions of interactions between large-scale
networks. Moreover, the differential occurrence of specific FC
states over time motivates theories regarding their functional
roles and relationships with arousal. We conclude that the
study of time-varying aspects of FC can unveil underappre-
ciated flexibility in the functional coordination between differ-
ent neural systems, and that the further investigation and
exploitation of these fluctuations may improve our under-
standing of cognitive and behavioral dynamics.

Materials and Methods

Data Acquisition and Preprocessing
Data used in this work comprise resting-state scans from 405 healthy
participants (mean age: 21.0 years, range: 12–35 years, 200 females)
collected on the same scanner and combined across 34 studies and 18
principal investigators at the Mind Research Network. Informed
consent was obtained from all subjects according to institutional
guidelines at the University of New Mexico and data were anon-
ymized prior to group analysis. The current dataset represents a
subset of the 603 subjects used in Allen et al. 2011, where more

stringent inclusion criteria have been incorporated to limit the influ-
ence of motion (subject data with a maximum translation of >1.5 mm
were excluded) and poor spatial normalization (subject data with
spatial correlation to EPI template <0.93 were excluded), and to
improve sample homogeneity (subjects older than 35 were excluded).
Further details on sample demographics can be found in Allen et al.
2011.

Imaging was performed on a 3-T Siemens Trio scanner with a
12-channel radio frequency coil. T2*-weighted functional images were ac-
quired using a gradient-echo EPI sequence with TE = 29 ms, TR = 2 s, flip
angle = 75°, slice thickness = 3.5 mm, slice gap = 1.05 mm, field of
view= 240 mm, matrix size = 64 × 64, voxel size = 3.75 mm×3.75
mm×4.55 mm. Resting-state scans were a minimum of 5 min, 4 s in dur-
ation (152 volumes); any additional volumes were discarded to match
data quantity across participants. Subjects were instructed to keep their
eyes open during the scan and fixate on a foveally presented cross.

Functional images were preprocessed using an automated pipeline
based around SPM 5 (http://www.fil.ion.ucl.ac.uk/spm/software/
spm5). Preprocessing included the removal of the first 4 image
volumes to avoid T1 equilibration effects, realignment using INRIa-
lign, slice-timing correction using the middle slice as the reference
frame, spatial normalization into Montreal Neurological Institute
space, reslicing to 3 mm× 3 mm× 3 mm voxels, and smoothing with a
Gaussian kernel (FWHM= 5 mm). Voxel time series were z-scored to
normalize variance across space, minimizing possible bias in sub-
sequent variance-based data reduction steps. Note that variance nor-
malization may not be optimal for all investigations as it removes
amplitude information that may be relevant for differences between
subjects; however, our focus here is temporal modulation rather than
magnitude, thus variance normalization is preferred.

Group ICA and Postprocessing
Data were decomposed into functional networks using a group-level
spatial ICA as implemented in the GIFT toolbox (http://mialab.mrn.
org/software/gift/; Fig. 1A). We used a relatively high model order
(number of components, C = 100) to achieve a “functional parcella-
tion” of refined cortical and subcortical components corresponding to
known anatomical and functional segmentations (Kiviniemi et al.
2009; Smith et al. 2009; Abou-Elseoud et al. 2010). Subject-specific
data reduction via principal components analysis (PCA) retained 120
principal components using a standard economy-size decomposition
and group data reduction retained C = 100 PCs using the expectation–
maximization (EM) algorithm to avoid otherwise prohibitive memory
requirements (Roweis 1998). The Infomax ICA algorithm (Bell and
Sejnowski 1995) was repeated 10 times in ICASSO (http://www.cis.hut.
fi/projects/ica/icasso) and aggregate spatial maps (SMs) were esti-
mated as the modes of the component clusters. Subject-specific SMs
(Si) and time courses (TCs, Ri) were estimated using the GICA1 back-
reconstruction method based on PCA compression and projection
(Calhoun et al. 2001; Erhardt et al. 2011), which is equivalent to
least-squares based dual regression (Filippini et al. 2009) in the
subject-specific PC-reduced space (see Appendix of Allen et al. 2012).
As in Allen et al. 2011, we characterized a subset of C1 = 50 com-
ponents as ICNs, as opposed to physiological, movement related, or
imaging artifacts (ARTs). Components were evaluated based on
expectations that ICNs should exhibit peak activations in grey matter,
low spatial overlap with known vascular, ventricular, motion, and sus-
ceptibility artifacts, and should have TCs dominated by low-frequency
fluctuations (Cordes et al. 2000).

Component TCs underwent additional postprocessing to remove
remaining noise sources. These include low-frequency trends related
to scanner drift, motion-related variance which may not be wholly
captured in distinct components given the spatial nonstationarity
inherent to movement, and other nonspecific “spikes” or noise arti-
facts that are not decomposed well by a linear mixing model. Postpro-
cessing included 1) detrending linear, quadratic, and cubic trends, 2)
multiple regression of the 6 realignment parameters and their tem-
poral derivatives, 3) removal of detected outliers, and 4) low-pass fil-
tering with a high-frequency cutoff of 0.15 Hz. The outlier removal
approach used here is similar to the “scrubbing” method proposed by
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(Power et al. 2012), but rather than remove affected time points from
data (which would compromise the subsequent sliding window ap-
proach), we replaced outliers with the best estimate using a
third-order spline fit to the clean portions of the TCs. Outliers were
detected based on the median absolute deviation, as implemented in
3DDESPIKE (http://afni.nimh.nih.gov/afni). Improvement in the
root-mean-square of the temporal derivative over component TCs, re-
ferred to as “DVARS” in Power et al. 2012 (see Supplementary Fig.
S1A) and removal of anticipated motion-related biases from FC esti-
mates (see Supplementary Fig. S1B), suggest satisfactory correction of
motion artifacts. As a final step in postprocessing, we normalized the
variance of each TC, thus covariance matrices (below) correspond to
correlation matrices. In exploratory work, we repeated all analyses on
component TCs that underwent minimal postprocessing (only de-
trending and low-pass filtering) and found nearly identical results
with regard to FC temporal variability (Fig. 4) and connectivity states
(Fig. 5), suggesting that the somewhat aggressive postprocessing
applied here did not fundamentally alter dynamic structures.

FC Estimation and Temporal Variability
For each subject i = 1…M, stationary FC was estimated from the TC
matrix Ri as the C × C sample covariance matrix ∑i (Fig. 1B, left).
Dynamic FC was estimated with a sliding window approach, wherein
we computed covariance matrices ∑i(w), w = 1…W, from windowed
segments of Ri (Fig. 1B, right). We used a tapered window (see
Fig. 1B, right), created by convolving a rectangle (width = 22 TRs = 44
s) with a Gaussian (σ = 3 TRs) and slid in steps of 1 TR, resulting in
W = 126 windows. Because relatively short time segments may have
insufficient information to characterize the full covariance matrix, we
estimated covariance from the regularized precision matrix (inverse
covariance matrix, ∑i

−1(w)) (Varoquaux et al. 2010; Smith et al.
2011). Following the graphical LASSO method of Friedman et al.
2008, we placed a penalty on the L1 norm of the precision matrix to
promote sparsity. The regularization parameter lambda (λ) was opti-
mized separately for each subject by evaluating the log-likelihood of
unseen data (windowed covariance matrices from the same subject)
in a cross-validation framework. Final dynamic FC estimates for each
window, ∑i

L1(w), were concatenated to form ∑i
L1, a C × C ×W array

representing the changes in covariance (correlation) between com-
ponents as a function of time. Both stationary and dynamic FC esti-
mates were Fisher transformed to stabilize variance prior to further
analysis.

FC estimates between some ICNs exhibited greater temporal varia-
bility than others (see Figs. 3 and 4A). We used a simple algorithm to
separate ICNs into groups with more variable FC (Partition 1, P1), re-
ferred to as the “zone of instability” (ZOI), and less variable FC (P2).
The algorithm proceeded with 3 steps: 1) ICNs were randomly as-
signed to P1 or P2 with equal probabilities, 2) in repeated iterations,
membership for a single component was changed in such a way to
maximize the Separation Index

SI ¼ 1
h1

X
u;v [ P1

au;v � 1
h2

X
u;v [ P2

au;v

 !
=s2

where au,v is the average low-frequency (<0.025 Hz) amplitude of FC
oscillations between components u, v = 1, ... C1, σ2 is the standard
deviation over au,v, u; v [ P2, and h1, h2, are the number of com-
ponents in each respective partition, and 3) stopping criteria were
reached when any change in membership would result in a decrease
in SI. To obtain a robust partitioning solution that incorporated data
variability and was independent of initial conditions, we repeated the
algorithm on b = 1000 bootstrap resamples of the data, that is, M sub-
jects were drawn with replacement and au,v was recomputed as the
average over that sample. ZOI scores for each ICN (see Fig. 4B) were
then calculated as the fraction of repetitions in which the component
was assigned to P1.

Clustering Analysis
To assess the frequency and structure of reoccurring FC patterns we
applied the k-means clustering algorithm (Lloyd 1982) to windowed
covariance matrices. We used the L1 distance function (Manhattan dis-
tance), guided by work suggesting the L1-norm may be a more effec-
tive similarity measure than the L2 (Euclidean) distance for
high-dimensional data (Aggarwal et al. 2001). Only covariances
between the C1 = 50 ICNs were used in the clustering analysis, result-
ing in (50 × (50− 1))/2 = 1225 features. Prior to clustering, subject

Figure 1. Illustration of analysis steps. (A) Group ICA decomposes resting-state data from M= 405 subjects into C= 100 components, C1 = 50 of which are identified as
intrinsic connectivity networks (ICNs). GICA1 back reconstruction is used to estimate the TCs (Ri) and SMs (Si) for each subject. (B) Stationary FC between components (left,
∑i) is estimated as the covariance of Ri. Dynamic FC (right, ∑i

L1(w)) is estimated as the series of regularized covariance matrices from windowed portions of Ri.
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arrays ∑i
L1 were subsampled along the time dimension. Subsampling

was performed both to reduce redundancy between windows (the
chosen time step of 1 TR induces high autocorrelation in FC time
series) and to reduce computational demands. Similar to EEG micro-
state analysis (Pascual-Marqui et al. 1995), subject exemplars were
chosen as those windows with local maxima in FC variance, resulting
in 7.5 ± 1.5 (mean ± SD) windows per subject (range: 4–12) for 3026
instances. The clustering algorithm was applied to the set of all
subject exemplars and was repeated 500 times to increase chances of
escaping local minima, with random initialization of centroid pos-
itions. The resulting centroids (cluster medians) were then used to in-
itialize a clustering of all data (405 subjects × 126 windows = 51 030
instances). To ensure that exemplar selection did not bias group clus-
ters, we repeated the analysis using alternative methods: 1) we first
applied clustering at the subject level and propagated subject cen-
troids to the group level, and 2) we selected 6 windows from each
subject at random. Both methods produced clusters almost identical
to those observed using windows at local maxima. Likewise, we re-
peated the clustering using different distance functions (correlation,
Euclidean, and cosine, rather than the L1-norm) and also found extre-
mely similar results. For group clustering (and subject-level clustering
where applicable), the number of clusters (k) was determined using
the elbow criterion of the cluster validity index, computed as the ratio
between within-cluster distance to between-cluster distance, though
additional exploratory analyses using hierarchical clustering or expli-
citly varying k (see Supplementary Fig. S4) demonstrated consistent
results over a large range of k.

Reproducibility of clusters was established via replication on
bootstrap resamples and nonoverlapping split-half samples of sub-
jects (see Supplementary Fig. S5). We additionally validated that
clusters were not due to nonspecific differences across subjects or

time by applying k-means to surrogate data. Surrogate datasets
were created via phase randomization in the Fourier domain (Pri-
chard and Theiler 1994) (see Supplementary Fig. S6A). To create
surrogate dataset 1 (SR1), each subject array ∑i

L1 was Fourier
transformed and the same random sequence of phases was added
to all FC phase spectra, maintaining the covariance structure across
all windows. For SR2, an identical process was applied, but a
different random sequence of phases was added to each FC phase
spectrum, disturbing the covariance structure. The mean, variance,
and temporal autocorrelation of FC time series in SR1 and SR2
were identical to the original data (see Supplementary Fig. S6B).
As seen in Supplementary Figure S6C, clusters were found in SR1,
but not SR2, demonstrating that it is the co-occurrence of FC
between specific ICNs that drives the clustering, rather than distinc-
tions in FC mean or variance across subjects.

As a validation of the clustering approach, we used the SimTB fra-
mework (Erhardt et al. 2012) (http://mialab.mrn.org/software/simtb/)
to simulate fMRI time series under a model of dynamic neural connec-
tivity, then applied k-means clustering to estimate FC states from
windowed covariance matrices in a manner identical to the real data.
As shown in Supplementary Figure S7, the clustering provided excel-
lent estimates of both the discrete neural states and the transitions
between states, suggesting that the clusters derived from real data
faithfully reflect the structure and temporal properties of dynamic
connectivity.

Results

Figure 2A displays the ICNs identified with group ICA. Based
on their anatomical and presumed functional properties, ICNs

Figure 2. ICN SMs (A) and the stationary FC between them (B). ICNs are divided into groups and arranged based on their anatomical and functional properties. Within each
group, the color of the component in (A) corresponds to the colored flag shown along the axes of (B). FC was averaged over all subjects and inverse Fisher transformed
(r= tanh(z)) for display, facilitating comparisons with previous studies. ICN labels in (B) denote the brain region with peak amplitude and refer to bilateral activations unless
specified as left (L) or right (R). See Supplementary Figure S2 and Table S1 for more detailed information on each component. STG, superior temporal gyrus; PreCG, precentral
gyrs; PoCG, postcentral gyrus; SMA, supplementary motor area; ParaCL, paracentral lobule; SPL, superior parietal lobule; MTG, middle temporal gyrus; FFG, fusiform grys; MOG,
middle occipital gyrus; SOG, superior occipital gyrus; IPL, inferior parietal lobule; ITG, inferior temporal gryus; MCC, middle cingulate cortex; pInsula, posterior insula; MiFG, middle
frontal gyrus; IFG, inferior frontal gyrus; aInsula, anterior insula; PHG, parahippocampal gyrus; PCC, posterior cingulate cortex; AG, angular gyrus; ACC, anterior cingulate cortex;
SFG, superior frontal gyrus; CB, cerebellum.
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are arranged into groups of subcortical (SC), auditory (AUD),
somatomotor (SM), visual (VIS), cognitive control (CC; refer-
ring loosely to the planning, monitoring, and adapting one’s
behavior), default-mode (DM), and cerebellar (CB)

components. The manual arrangement of ICNs is very similar
to various orderings provided by empirical methods, includ-
ing spectral clustering and algorithms based on the optimiz-
ation of modularity and diagonal structure as implemented in

Figure 3. Examples of FC dynamics for subject 124 (A), subject 267 (B) and subject 360 (C). (A1–C1) FC for each subject, averaged over all windows. (A2–C2) FC time series
for connections between select pairs of ICNs. Correlation coefficients are plotted at the time point corresponding to the center of the window. Top panels show ∑i

L1(w) for
select windows. Highlighted connections are PreCG [2] to Thalamus [15] (light blue), L MOG [89] to R PoCG [10] (red), L IPL [76] to MOG [80] (orange), ACC [26] to R IPL [67]
(dark blue), and MiFG + SFG [48] to L AG [75] (green). Highlighted windows are a subsample of the exemplars used in the clustering analysis (see Fig. 5A). (A3–C3) FC spectra
for the time series in (A2–C2). Filled colored arrows marking the FC element locations in (A1–C1) correspond to the colored lines in (A2–C2) and (A3–C3).
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Brain Connectivity Toolbox (http://www.brain-connectivity-
toolbox.net/). Detailed images of each ICN are shown in Sup-
plementary Figure S2 and coordinates of peak activations are
listed in Supplementary Table S1. ICNs are similar to those
observed in previous high model order ICA decompositions
(Kiviniemi et al. 2009; Smith et al. 2009; Abou-Elseoud et al.
2010; Allen et al. 2011) and cover the majority of subcortical
and cortical gray matter. Figure 2B displays the FC between
ICNs, computed over the entire scan length and averaged
over subjects. Patterns of FC are consistent with prior litera-
ture, showing modular organization within sensory systems
and default-mode regions, as well as anticorrelation between
these domains (e.g. Fox et al. 2005; Chang and Glover 2010;
Shirer et al. 2012). We note that, based on average connec-
tivity, language areas (L MTF + IFG and R cerebellum) cluster
with default-mode components, presumably because of a
high proportion of time spent in self-narrative and inner
speech (Delamillieure et al. 2010).

Results from the sliding window analysis are shown in
Figure 3A–C, which displays FC dynamics for 3 representative
subjects. As seen from the FC time series (Fig. 3A2–C2) and
corresponding videos (Supplementary Movies 1–3), FC
between some ICNs is highly nonstationary, in some cases ex-
hibiting both strongly positive and strongly negative corre-
lations within the 5-min scan. Fourier analysis of the time
series (Fig. 3A3–C3) shows low-frequency FC oscillations
peaking between 0.005 and 0.015 Hz, corresponding to a
period on the order of 100 s. We note that FC oscillations
between ICN components are significantly larger than those
between ART components (see Supplementary Fig. S3A, spec-
tral area under the curve: paired t(404) = 39.4, P ≈ 0), and are
also weighted toward lower frequencies (see Supplementary
Fig. S3B, spectral center of mass: paired t(404) =−27.7, P ≈
0). These distinctions suggest that dynamics between ICNs
are related to changes in connectivity, rather than nonspecific
physiological changes (e.g., cardiac or respiratory shifts) or
subject movement that would be expected to affect all com-
ponents similarly.

Focusing on ICNs, we observe greater FC variability
between some pairs of components than others. For example,
for the subjects shown in Figure 3, FC between DM com-
ponents 48 and 75 (green line) is relatively stable throughout

the scan, while FC between CC component 76 and VIS com-
ponent 80 (orange line) undergoes larger fluctuations. Com-
paring the amplitude of low-frequency FC oscillations
between all pairs of ICNs (Fig. 4A) suggests an interesting
pattern: a distinct set of ICNs that have more variable FC with
one another than with other components. ICNs centered in
superior occipital cortex exhibit more variable FC with default-
mode regions than other areas, and both these domains show
variable connections with components of inferior parietal
cortex. We use an iterative partitioning algorithm on repeated
bootstrap resamples of the data to distinguish the set of
components that show more variable connections with one
another (Fig. 4B, see Materials and Methods section for
details). As expected from our initial examination of oscillation
amplitude (Fig. 4A), dorsal attention areas, default-mode
regions, and superior occipital networks are consistently
assigned to the partition with more variable connectivity
(Fig. 4C). We refer to this set of regions as comprising a ZOI,
potentially reflecting a large-scale network capable of flexible
behavior and heterogeneous function.

Connectivity States
As seen in Figure 3A2–C2 and Supplementary Movies 1–3, the
variability in individual FC time series is hardly random. Fluc-
tuations give rise to highly structured patterns of FC that
emerge and dissolve over tens of seconds. To explore the
possibility that certain connectivity patterns may be
quasi-stable, that is, they reoccur over time and are present in
numerous subjects, we applied k-means clustering to the
windowed FC matrices (see Materials and Methods section).
Figure 5 displays the clustering results with k = 7. Each matrix
represents the centroid of a cluster and putatively reflects a
connectivity state stably present within the data. We note that
these clusters are fully reproducible in bootstrap resamples of
subjects and split-half analyses (see Supplementary Fig. S5A),
are decomposed over a large range in the number of clusters
(k) (see Supplementary Fig. S4), and are not found when
using “null” data (i.e., disrupted covariance structure) that is
matched to the real data in terms of mean, variance, and
temporal autocorrelation (see Supplementary Fig. S6A).

Figure 4. Assessment of FC variability. (A) Amplitude of low-frequency (<0.025 Hz) FC oscillations between ICNs, averaged over subjects. Bins with greater amplitude indicate
more variable FC. (B) Bootstrap partitioning procedure used to identify zone of instability (ZOI) scores for each component (see Materials and Methods section) (C) Surface
rendering of ICNs with a ZOI score of >0.5.
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Figure 5. Clustering approach (A) and result (B) for k= 7. Each cluster (States 1–7) is summarized with its centroid (left), modularity partition obtained with the Louvain
algorithm for finding community structure (top right), and number of occurrences as a function of time (bottom right). The total number and percentage of occurrences is listed
above each centroid and the number of modules (n) and modularity index (Q*, as defined in Rubinov and Sporns 2011) are adjacent to module depictions. Where possible, module
colors (blue, red, green, and yellow) were matched across states such that similar partitions have the same color. As modularity partitions vary slightly from run-to-run, the Louvain
algorithm was repeated on 100 bootstrap resamples (resampling ∑i

L1(w) within each cluster) and consistency in modular assignment was mapped to color opacity (completely
opaque = assigned to same module on all resamples; completely transparent = assigned to same module on 1/n resamples). beta Values indicate the slope (in units of
percentage per minute) of the best linear fit (red) to the occurrence trend (blue). Light gray lines show occurrence profiles for 100 bootstrap resamples (resampling subjects).

Cerebral Cortex March 2014, V 24 N 3 669

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/24/3/663/394348 by guest on 10 April 2024



FC states are arranged in order of emergence (see Sup-
plementary Fig. S4). State 1, which accounts for >30% of all
windows, resembles the stationary FC (compare to Fig. 2)
and, based on our observations from higher order and hier-
archical clustering, signifies the average of a large number of
additional states that are not sufficiently distinct or frequent to
be separated. FC patterns in States 2–7 are observed less fre-
quently (ranging between 7 and 15%), but represent connec-
tivity diverging substantially from the mean. Differences are
apparent in terms of both the magnitude and the sign of con-
nectivity between ICNs and the network modularity, that is,
the partitioning of ICNs into subgroups. Modular partitions
(color-coded in the axial, coronal, and sagittal slices in Fig. 5)
are found using the Louvain algorithm with the definition for
optimal modularity suggested by (Rubinov and Sporns 2011)
and implemented in the Brain Connectivity Toolbox, which
operates on the unthresholded FC matrix.

We describe 3 notable features that differ between FC states,
though many additional distinctions are also present. First,
states are differentiated by connectivity between DM regions. In
States 2 and 7, a large DM module (blue) is present, comprising
ICNs dedicated to the bilaterial hippocampi, precuneus, pos-
terior cingulate cortex (PCC), anterior cingulate cortex, angular
gyri, lateral temporal cortex, and inferior frontal cortex. In con-
trast, States 5 and 6 reveal a functional segregation between
posterior DM nodes (precuneus and PCC) and anterior and
lateral parietal regions. ICNs covering posteromedial cortex act
in synchrony with some VIS and CC components and show
weak asynchrony with other DM regions, leading to modified
module affiliations. States are also differentiated by the FC
between DM components and other regions throughout the
brain. In most states, SM components show negative corre-
lations with the DM system and positive correlations with
sensory regions, often forming a large sensorimotor module

(red). However in States 6 and 7, several SM ICNs exhibit “posi-
tive” correlations with DM components (and negative corre-
lations with visual, auditory, and subcortical regions), resulting
in the inclusion of these motor components in the DM module.
Similarly, note that several frontal CC components that are typi-
cally are anticorrelated or uncorrelated with the DM system (e.
g., States 2, 6, 5, and 7) exhibit different behavior in State 4 and
show positive FC with DM regions (and negative FC with sen-
sorimotor areas). The DM module expands to include a larger
number of frontal regions that form their own module in other
states (e.g., yellow in States 1 and 5; green in States 2 and 6). A
third discriminating feature is the FC between cortical and sub-
cortical components, which largely relates to State 3. With the
exception of State 3, the thalamus and parts of the cerebellum
consistently show synchronous activation with cortical com-
ponents dedicated to the sensorimotor system. In striking con-
trast, State 3 shows strongly asynchronous activation between
subcortical regions (bilateral thalamus, basal ganglia, and cer-
ebellum) and sensorimotor cortex. This dissociation is
accompanied by a substantial reduction in connectivity
between DM regions, such that a prototypical DM module is no
longer present. These large deviations in FC and modularity
suggest that State 3 represents a cognitive state quite distinct
from those represented in other clusters, a topic we explore
further in the analysis below and in the Discussion section.

State Transitions
In addition to the describing the connectivity differences that
distinguish FC states, we can also examine their occurrence as
a function of time (Fig. 5, lower right panels) and the tran-
sitions between them. Figure 6A shows the state assignments
as a function of time for the 3 example subjects. As we would
expect from the very slow connectivity dynamics (Fig. 3), FC

Figure 6. Transitions between FC states. (A) State vectors for the 3 example subjects shown in Figure 3. Assigned states are plotted at the time point corresponding to the
center of the sliding window. (B) The state transition matrix (TM), averaged over subjects. High values along the diagonal indicate a high probability of staying in a state. Note
that transition probability is color-mapped on a log-scale. (C) The stationary probability vector (π, principal eigenvector of the TM) shows the steady state, or “long run” behavior.
Error bars indicate the nonparametric 95% confidence intervals obtained from 1000 bootstrap resamples of the average TM (resampling subjects).
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tends to be assigned to single states for long periods, though
shorter periods are commonly seen when transitioning
between states (e.g., for Subject 267, FC is briefly assigned to
State 5 as it changes from States 1–6). Similar behavior is seen
in iterations of dynamic FC simulations (see Supplementary
Fig. S7), with misclassification most likely to occur in transition
periods. We can characterize transition behavior by consider-
ing FC as a Markov chain (MC), a system that undergoes tran-
sitions between a discrete number of states. In Figure 6B, we
show the average transition matrix (TM) for this system, which
represents the probability of changing from one state to
another. White squares along the diagonal signify a very high
probability of staying in the same state. For the off-diagonal
elements, hotter colors in the State 1 column indicate a higher
probability of entering State 1 from the other states, and cooler
colors in the State 3 row indicate a lower probability of exiting
State 3. Because the average TM is regular (all transition prob-
abilities are >0), we can also approximate the stationary prob-
ability vector (π) as the principal eigenvector of the TM (Meyer
2000). The vector π, displayed in Figure 6C, represents the
equilibrium probability of finding the MC in a particular state,
that is, the expected behavior of the system in the long run;
note that this is a distinct quantity from the number or fraction
of occurrences presented in Figure 5. The stationary probability
for State 3 exceeds 0.4, far greater than the probabilities for
other states, which range from roughly 0.05 to 0.15, meaning
that in the long run, the system is most likely to be found in
State 3. These results are congruent with the temporal trends in
state assignment displayed in Figure 5. There is a steady in-
crease in the number of windows clustered into State 3 over
time (increasing 3-fold), and a corresponding decrease in the
frequency of windows assigned to States 2 and 7. Based on
transition dynamics, we hypothesize that State 3 represents a
state of drowsiness or light sleep, which subjects are more
likely to enter into as time continues. Supporting this hypoth-
esis, both the thalamocortical disconnection and weakening of
DM connectivity that distinguish State 3 are consistent with
changes to FC that occur as subjects move from wakefulness to
sleep (Spoormaker et al. 2010; Larson-Prior et al. 2011;
Sämann et al. 2011)

Discussion

Here, we explore dynamic patterns of FC with ICA, sliding
windows, and clustering. Adding to the growing literature on
connectivity dynamics during rest (Chang and Glover 2010;
Kiviniemi et al. 2011; Hutchison et al. 2012; Jones et al. 2012)
and internally driven states (Harrison et al. 2008; Shirer et al.
2012), our analysis of connectivity dynamics in a large sample
(n = 405) provides, to our knowledge, the first whole-brain
characterization of regional differences in FC variability and
distinction of discrete FC states. These results and their impli-
cations are discussed in turn.

A Zone of Instability
We use a partitioning algorithm to identify a group of ICNs
with more variable connections between them, conceived as a
ZOI. This approach distinguishes heteromodal occipital
cortex, lateral parietal cortex associated with the dorsal atten-
tion system (Corbetta and Shulman 2002), and lateral and
medial aspects of the default network (Buckner et al. 2008).

Perhaps unsurprisingly, ZOI regions are of the most globally
connected (Cole et al. 2010) and some consistently emerge as
structural and functional hubs (Hagmann et al. 2008; Buckner
et al. 2009; Honey et al. 2009) or regions of high network cen-
trality (Zuo et al. 2012) in topological descriptions of brain
connectivity, collectively suggesting heterogeneous and inte-
grative function. The characterization of a ZOI is somewhat at
odds previous work delineating these same regions into 2
(Fox et al. 2005) or 3 (Vincent et al. 2008) different systems
with functionally distinct, and potentially competing roles.
While ZOI components certainly participate in systems with
different primary roles, our analyses highlights that the
relationships between them are flexible (more so than
between other regions) with functional connections that
emerge and dissolve, arguing against a labeling scheme with
fixed segregation. Furthermore, our results may motivate ana-
lyses focused on a sort of “FC variability mapping” for both
resting state and task datasets. Rather than focus on regions
that show relatively constant patterns of connectivity (implicit
to conventional connectivity analyses), there may be great
benefit to identify those regions whose FC is notably more
variable, suggesting membership in multiple large-scale
systems and roles in adaptive processes.

Connectivity States
We use k-means clustering to identify reoccurring short-term
connectivity patterns, which we describe as FC states. FC
states are well predicted by large-scale models of neuronal
connectivity that consider the repertoire of functional motifs
generated by a given structural architecture. As described by
Deco et al. (2011) in their recent review of connectivity
models and dynamics, “[m]easurements over longer time
windows recapitulate the anatomical connectivity, reflecting
the RSNs that have been characterized in the literature…
Shorter time windows emphasize the small departure from
the RSN pattern, in which different nodes form new func-
tional networks for a short period of time and then return to
the RSN pattern. […T]he deterministic structure provided by
the anatomy allows for certain functional networks to be re-
peated frequently in time, but that at any given point the
precise configurations depend on the part of the dynamic re-
pertoire that is being explored…”. In excellent agreement
with these models, we identify stable “departures” that in
some cases are strikingly different from FC characterized over
long time scales. Focusing specifically on DM connectivity,
the FC states shown in Figure 5 challenge the notion of a
singular and stable default-mode network. Rather, the con-
stituents of this network and their covariation with
nondefault-mode regions, such as motor and premotor cortex,
are variable over time. Of particular note, precuneus ICNs
exhibit affiliation with the DM module in only some states (1,
2, and 7), reflecting and potentially resolving the confusion
and ongoing discussion regarding the inclusion of the precu-
neus in the default network (see Buckner et al. 2008 and Mar-
gulies et al. 2009 for excellent discussions). Furthermore,
established “core” DM regions such as posterior cingulate and
lateral parietal cortex may temporarily fail to exhibit synchro-
nous activity, as in State 3. These findings, along with pre-
vious investigations of dynamics (Chang and Glover 2010;
Kiviniemi et al. 2011; Hutchison et al. 2012) highlight that
characterizations of connectivity and functional networks are
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strongly shaped by the time scale over which connectivity is
measured. As studies increasingly explore the relationship
between behavior and connectivity patterns (e.g., Kelly et al.
2008; Hamilton et al. 2011; Thompson et al. 2012), it will
become more important to understand the relevant time
scales over which FC (and FC changes) should be assessed.

Though our study is the first to characterize discrete FC states
from resting-state imaging data, the observed states relate well
to previous findings. In their study of connectivity dynamics in
macaques and humans, Hutchison et al. (2012) describe
periods of “hypersynchronization” found in both species
during which oculomotor and motor networks showed extre-
mely high intranetwork connectivity, that is, strong and positive
correlations between all nodes. Hypersynchronization periods
persisted for tens of seconds and reoccurred throughout the
scan, suggesting analogy to the FC states described here.
Specifically, States 2 and 6 represent periods with synchronous
activation between oculomotor/dorsal attention areas, while
State 4 signifies time windows with high correlations through-
out the motor system. Though not investigated by (Hutchison
et al. 2012), our results predict that periods of hypersynchroni-
zation between motor or oculomotor nodes would be
accompanied by synchronization of default-mode regions and
strong anticorrelation between the systems, highlighting the
benefit of whole-brain connectivity studies.

As mentioned in the Results section, we posit that State 3
represents connectivity related to drowsiness/light sleep
based on the temporal properties of occurrence and whole-
brain FC. Because the resting-state scan is unconstrained and
subjects are free to “mind-wander” in any fashion they
choose, it is unlikely that FC patterns representing specific
cognitive states would follow similar timelines across subjects.
In contrast, the only feature expected to be common across
subjects is the increased likelihood of drowsiness or sleep. In-
triguingly, State 3 exhibits the expected temporal profile for
drowsiness, becoming increasingly frequent as the scan pro-
gresses (Fig. 5). Corresponding results from a MC analysis
suggest that subjects are most likely to be found in this state
in the long run (Fig. 6). Along with increased prevalence in
time, the FC pattern for State 3 is consistent with a transition
from wakeful rest to sleep. The descent to sleep is marked by
reduced thalamocortical connectivity (Spoormaker et al.
2010), increased subcortical connectivity (Larson-Prior et al.
2011), and a breakdown of default-mode connectivity (Spoor-
maker et al. 2010; Larson-Prior et al. 2011), all of which are
found in State 3. Also in agreement with this theory, FC states
showing the largest decreases in occurrence over time (States
2 and 7) are those with extensive intradefault network con-
nectivity and greater antagonism between DM and CC com-
ponents, signatures previously associated with greater task
performance and presumably awareness (Kelly et al. 2008;
Thompson et al. 2012). Though the hypothesized represen-
tation of State 3 should be tested with concurrent EEG-fMRI
recordings, we believe that its identification in the current
dataset speaks to the strength of the dynamic estimation/clus-
tering approach and supports accessibility of spontaneous
state-transitions from imaging data alone.

Finally, it is interesting to consider the relationship
between FC states and EEG microstates, both of which are
proposed to reflect the coordination of large-scale neural as-
semblies supporting different cognitive processes (e.g.,
Lehmann et al. 1998; Shirer et al. 2012). Although microstates

persist for only hundreds of milliseconds, their dynamics
exhibit fractal (scale free) organization that spans time scales
as long as tens of seconds (Van De Ville et al. 2010). Thus, it
is possible that FC states and EEG microstates capture very
similar physiological phenomena, albeit as seen through very
different spatial and temporal filters. Indeed, several recent
studies have pursued microstate-based fusion of EEG-fMRI
resting-state datasets, with promising results suggesting some
correspondence between microstates and a limited number of
fMR-based ICNs (Britz et al. 2010; Musso et al. 2010; Yuan
et al. 2012). Large-scale ICNs have also been linked to covary-
ing amplitude fluctuations in alpha and beta neural oscil-
lations between distant regions (Brookes et al. 2011), with
emerging work focused on the time-varying aspect of this
connectivity (de Pasquale et al. 2011; Baker et al. 2012). In-
herently greater temporal resolution in EEG and MEG make
these methods naturally more suited for investigations of dy-
namics, though the unambiguous source localization and full
coverage of deep cortex and subcortical nuclei afforded by
fMRI advocates the complementary use of both techniques in
studies of FC and connectivity changes. We believe further
investigations into the consistency and specificity between
different fMRI-based FC states and various electrophysiologi-
cal features (including microstates and band-limited power
fluctuations) will be fruitful and important lines of work to
elucidate spatiotemporal dynamics associated with spon-
taneous cognition and behavioral transitions.

Limitations and Future Directions
The results presented here must be considered in the context
of several experimental and methodological limitations. First
and foremost, our ability to make inferences from FC dy-
namics and states is limited. Owing to the unconstrained
nature of the resting-state scan, we have few tools with which
to interrogate changes in FC; the functional roles of dynamics
and their relationships to subjects’ cognitive states (if any)
remain unknown. As demonstrated by (Hutchison et al.
2012), fluctuations in FC are readily observed in the anesthe-
tized brain and may simply represent the repertoire of spon-
taneous patterns that one would expect based on underlying
anatomical connectivity (Deco et al. 2011). Critical tests for a
functional role of connectivity dynamics would be their influ-
ence on perception, cognition, or behavior, as demonstrated
previously for a number of electrophysiological and hemody-
namic signatures (e.g., Arieli et al. 1996; Boly et al. 2007;
Eichele et al. 2008). Such evidence is emerging, with demon-
strations that trial-to-trial variations in a large-scale connec-
tivity affect response speed in a psychomotor vigilance task
(Thompson et al. 2012), and that FC dynamics between par-
ticular regions may be related to fluctuations in autonomic
system activity and overall awareness (Chang et al. 2012).

One should also consider that observed dynamics may be
driven by time-varying noise (e.g., subject motion and vari-
able respiratory and cardiac rhythms) despite our attempts to
minimize these influences via aggressive outlier removal
(Power et al. 2012) and a high model order ICA decompo-
sition (Birn et al. 2008; Starck et al. 2010). The observed
distinctions between ICN and ART components (see Sup-
plementary Fig. S3) offer some confirmation that the observed
effects are not solely due to nonspecific physiological
changes. Future work should consider multimodal
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approaches such as concurrent EEG-fMRI, to determine elec-
trophysiological differences between FC states, as well as
subtle experimental manipulations of subjects’ internal states,
to permit the mapping (and decoding) of cognitive states
from connectivity data (e.g., Richiardi et al. 2011; Gonzalez-
Castillo et al. 2012; Shirer et al. 2012).

A second experimental limitation of this study is the quan-
tity of data available for each participant. Though we were
able to compile data from a very large number of subjects,
which benefits several aspects of the analyses, each subject
was only scanned for approximately 5 min, precluding robust
characterization of connectivity dynamics and state transitions
at the level of the individual. Longer scanning times (ideally
tens of minutes) will improve estimates of FC variability and
permit patterns of connectivity to reoccur several times,
which may be critical for future investigations that examine
relationships between FC dynamics and behavioral variability
within and between subjects.

Methodological limitations relate to the assumptions and
constraints inherent to specific analyses. 1) In using spatial
ICA, we impose a model of spatial stationarity on the data and
assume that the structure of ICNs remains relatively constant
over time. This may appear at odds with the work of Kivinie-
mi et al. (2011) who demonstrate substantial spatial dynamics
when employing sliding time window ICA. However, these
authors used low model order ICA decompositions (on
average 15 components) to iteratively identify a single, large
DM network undergoing structural changes over time. In this
work, we capture prototypical DM regions in a number of
components that show large changes in FC with each other,
providing excellent agreement with (Kiviniemi et al. 2011).
Future work could consider higher model order ICA or clus-
tering to delineate regions that are more functionally hom-
ogenous (Craddock et al. 2012); however, as the number of
nodes grows, it will become increasingly difficult to estimate
the covariance matrix from short windows. Faster imaging
methods, such as MR-encephalography (Zahneisen et al.
2011) or multiband excitation (Moeller et al. 2010), may help
to overcome such limitations by increasing the number of
samples from which to compute covariance and potentially
enhancing signal quality by removing confounding physio-
logical signals. It is also possible that increased sampling
might reveal additional, faster dynamics in FC, though current
data suggest intrinsic fluctuations are primarily low-frequency
phenomena, adequately sampled with typical TRs.

Notably, the assumption of spatial stationarity made here is
in contrast to the assumption of temporal stationarity made by
Smith et al. in their “temporal” ICA analysis of resting-state data
(Smith et al. 2012). While both studies pursue the same general
goal of a more detailed analysis of intrinsic connectivity, they
do so with different aims and approaches. We focus on the
variability of temporal interactions between subnetworks. In
doing so, we assume that these subnetworks are spatially fixed
over time. Smith et al. focus on the spatial complexity and
overlap between networks, and implicitly assume that temporal
relationships are consistent over time. Thus, their approach is
less suited for explicit investigations of temporal dynamics. Im-
portantly, the results of the respective approaches need not be
contradictory; in fact, both approaches highlight subdivisions
of the DM system and their complex interactions with other
brain regions (e.g., see Fig. 2 in Smith et al. 2012). A more de-
tailed discussion of spatial and temporal ICA and other possible

models for decomposing intrinsic activity can be found in our
recent commentary (Calhoun et al. 2012).

Additional methodological limitations follow: 2) we charac-
terized FC as the covariance between ICN TCs, rather than use
metrics based on higher order statistics, such as mutual infor-
mation, or lag-insensitive measures such as cross-correlation
or coherence. While the use of covariance restricts the detec-
tion of nonlinear dependencies and the resolution phase of
and spectral relationships, it is preferred for its straightfor-
ward interpretation and tractability (e.g., the use of coherence
as in Chang and Glover 2010 would estimate connectivity in
terms of magnitude and phase as a function of time and fre-
quency for “each pair” of regions; applying this method to
the 50 regions studied here would present immense chal-
lenges with regard to data analysis and visualization). Future
work utilizing both real and simulated data should explore
the suitability of different connectivity metrics as applied to
studies of dynamics in large-scale networks. 3) Dynamics
were estimated using a sliding window size of 22 TRs (44 s).
In initial work, we varied window size from 30 s to 2 min and
found relatively little impact on dynamics beyond the ex-
pected result that larger windows reduce variability (Chang
and Glover 2010; Hutchison et al. 2012). Comparisons
between window sizes suggested 44 s provided a good trade-
off between the ability to resolve dynamics and the quality of
covariance matrix estimation, in agreement with demon-
strations that cognitive states may be correctly identified from
covariance matrices estimated on as little as 30−60 s of data
(Shirer et al. 2012), and that topological assessments of brain
networks begin to stabilize at window lengths of roughly 30 s
(Jones et al. 2012). 4) To identify patterns of FC, we used
k-means clustering. Though k-means is an efficient and robust
partitioning algorithm, it has several known limitations, in
particular difficulty separating clusters of different sizes and
densities as well as a high susceptibility to outliers. Alterna-
tive clustering models (e.g., density-based or fuzzy-clustering
methods) that are not subject to the same limitations may be
better suited to FC distributions. A variety of other approaches
to identify FC states are also possible, including using topolo-
gical descriptions of brain connectivity as features (e.g., mod-
ularity or community membership [Bassett et al. 2011; Jones
et al. 2012; Kinnison et al. 2012]) rather than the connectivity
values themselves, or using formal models for detecting
change points in connectivity, as recently introduced by
Cribben et al. (2012), rather than clustering. We are hopeful
that further work will develop and improve methods for the
identification of FC states and state transitions.

Supplementary Material
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