
Cortical Representation of Medial Axis Structure

Mark D. Lescroart1 and Irving Biederman1,2

1Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089-2520, USA and
2Psychology Department, University of Southern California, Los Angeles, CA 90089-2520, USA

Address correspondence to Mark D. Lescroart, Hedco Neuroscience Building, 3641 Watt Way, Los Angeles, CA 90089-2520, USA.

Email: mark.lescroart@gmail.com.

The identity of an object is not only specified by its parts but also by
the relations among the parts. Rearranging parts can produce
a completely different object, in the same manner as rearranging
the phonemes in ‘‘fur’’ can yield ‘‘rough.’’ How does the visual
system represent the relative positions of parts? Between-part
relations can be characterized by specifying the relations between
the medial axes (imaginary lines through the centers) of an object’s
parts. A functional magnetic resonance imaging multivoxel
classification study tested whether the medial axis structure is
represented in the human visual system independent of part identity
and overall object orientation. Stimuli were line drawings of novel
3-part geometrical objects, which differed in the relations between
their parts’ medial axes (i.e., in their medial axis structures), the
geons that composed each object, and the objects’ orientations in
plane and in depth. In regions of interest throughout visual cortex,
a support vector machine classifier was trained to distinguish
objects that shared either the same medial axis structures or the
same orientations. By the level of V3, different medial axis
structures were more accurately classified than different orienta-
tions, indicating a change in the representation of shape compared
with earlier visual areas.

Keywords: fMRI, MVPA, object recognition, shape recognition, V3

Introduction

Objects are represented as an arrangement of parts. Support for

a parts-based representation derives from studies of behavior

(Tversky and Hemenway 1984; Biederman and Cooper 1991;

Biederman and Gerhardstein 1993; Hayward 1998), single unit

electrophysiology (Tsunoda et al. 2001; Pasupathy and Connor

2002; Yamane et al. 2006), and neuroimaging (Hayworth and

Biederman 2006). A critical challenge in the study of object

representation is to determine how the relative positions of

object parts are encoded. Rearranging parts can lead to

a completely different interpretation of an object (Biederman

1987), just as changing the relative positions of phonemes in

a word can change the meaning of the word (as in ‘‘rough’’ and

‘‘fur’’). Explicit encoding of relations between parts is necessary

to reason about object structure (Hummel and Biederman

1992; Hummel and Holyoak 2003) and to determine what parts

of an object are missing, a task that appears on an IQ test for

children (Wechsler 2004). Still, as essential as between-part

relationships are to our understanding of the visual world,

comparatively few studies have investigated how they might be

encoded.

One way to define relationships between-object parts is in

terms of the relative positions of the parts’ medial axes—the

skeletal lines running through each part, as bones through

fingers. More than 40 years ago, Harold Blum (Blum 1967;

Blum and Nagel 1978) observed that specifying an object’s

medial axes provides a compact and intuitive way to parse the

object into parts and thereby describe its structure. Many

influential theories of object representation have used the

concept of principal or medial axes to define the origin of an

object-centered coordinate system (e.g., Marr and Nishihara

1978), to divide an object into parts (Hoffman and Singh 1997),

or to define categorical relationships between parts (Biederman

1987). Recently, numerous variants of Blum’s Medial Axis

Transform have been developed to reliably compute ‘‘shape

skeletons’’ for 2D and 3D shapes (Dey and Sun 2006; Feldman

and Singh 2006; Cornea et al. 2007), some of which have been

suggested as a means to index online libraries of 3D graphical

models (see http://www.cs.princeton.edu/gfx/proj/shape/).

Only a few neurocomputational studies have followed up on

the broad and intuitive appeal of medial axes as shape

descriptors. Lee et al. (1998) found that V1 cells show

heightened responses to oriented bars located along the medial

axis of a texture-defined figure, and Kimia (2003) has noted

that the lateral connections in V1 are well situated to compute

convex parts’ medial axes via a computation like Blum’s

‘‘grassfire’’ algorithm. To date, there has been no electrophys-

iological or imaging work exploring the representation of

medial axes beyond V1.

Early computation of individual parts’ medial axes could lead

to encoding of junctions between medial axes at later stages,

analogous to the way that computation of local orientations in

V1 is followed by encoding of junctions of edges (corners and

curves) in V4 (Pasupathy and Connor 1999). In this study, we

used multivoxel pattern analysis (MVPA) to test whether

categorically different medial axis structures elicit reliably

different blood oxygen level--dependent (BOLD) functional

magnetic resonance imaging (fMRI) patterns in regions of

interest (ROIs) throughout generally accepted cortical visual

areas, using a set of novel objects that vary in their overall

orientation, the shape of their parts, and their medial axis

structures.

Materials and Methods

Subjects
Eight right-handed subjects (ages 21--29, 2 females) with normal or

corrected-to-normal vision participated in the experiment. All were

screened for safety and gave written informed consent before

participating. They were financially compensated for their time, and

all subject protocols were approved by the USC Institutional Review

Board guidelines (and adhered to the Declaration of Helsinki).

Stimuli
Our stimulus set consisted of 9 objects, each rendered from 6 different

views (Fig. 1a). All objects were rendered in white on a dark gray
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background with no shading or texture (Fig. 1b). The 9 objects were

each composed of 1 of 3 groups of 3 geometrical volumes (geons),

arranged in 1 of 3 different structures according to the relationships

between the parts’ medial axes. The parts’ medial axes were conjoined

according to categorical distinctions in medial axis relationships

suggested in Biederman (1987), either end-to-end (i.e., with the medial

axes of each part colinear) or end-to-side (i.e., with the medial axes of

each part perpendicular). The parts joined end-to-side were either

centered or offset and the 2 parts adjoining a larger part were either

coplanar or offset.

To dissociate axis structure from low-level features such as local

orientation and low-frequency outline, the overall orientation of the

objects in plane and in depth was varied in six 22.5� increments. To

assure that the variation in orientation did indeed change the low-level

features of the images, stimuli were analyzed using a simple compu-

tational model of V1 (Lades et al. 1993). The model computed a ‘‘jet’’ of

Gabor coefficients at each of 100 points arranged in expanding radial

circles on each image. Each jet was composed of 40 Gabor filters:

8 equally spaced orientations (22.5� differences in angle) at 5 spatial

scales, each centered on the same point in the image. The output of

each filter was the magnitude of sine and cosine phases of spatial

frequency at each location. The overall result for each image was

a 4000-element vector (40 jets 3 100 locations) that captured the local

orientation information in the same way that V1 theoretically does.

A highly similar Gabor wavelet model can predict >30% of the variance

in responses to natural images in V1 (more variance than is predicted

by any other model) (David et al. 2004; Kay et al. 2008).

The low-level feature difference between each pair of images in our

stimulus set was computed as one minus the Pearson correlation

between the Gabor-jet vectors for each image. The average distances

between images that either shared or did not share the same axis

structure or overall orientation are shown in Figure 1c. The images that

shared the same global orientation were more self-similar as a group by

the Gabor-jet measure than were the images that shared the same axis

structure. The Gabor-jet metric has been extensively used for scaling

the physical differences between metrically varying stimuli (Fiser et al.

1996; Biederman and Kalocsai 1997; Xu et al. 2009) and predicts,

almost perfectly, the psychophysical similarity of metrically varying

faces and complex blobs (Yue et al. 2007).

The stimuli were thus designed such that the medial axis relation-

ships between the objects’ parts were the only commonality among all

the members of each ‘‘axis group.’’ Each image subtended ~5.8� of visual
angle. All stimuli were generated using Blender (www.blender.org) and

presented using the Psychophysics Toolbox (Brainard 1997; Pelli 1997;

Kleiner et al. 2007) for Matlab (Mathworks).

Task: Attend to Component Parts
During the MRI scans, subjects attended to the identities of the geons

composing the shapes and indicated via button press which of 3 part

groups or families (columns in Fig. 1a) each shape belonged to.

The shapes in the first group all had a straight-sided tapered brick as

the central piece, with a cone and a curved cylinder attached to it. The

shapes in the second group all had a large convex cylinder, a smaller

straight-sided brick, and a smaller curved triangular prism, and the

shapes in the third group all had a large concave brick, a smaller convex

cylinder, and a smaller curved, tapered brick. Since each axis group and

body orientation group contained an equal number of members of each

part group, the task was orthogonal to the experimental manipulations

of interest. Subjects used only one hand for their responses (half used

their right hand, half their left).

In separate testing sessions, each subject also performed an

analogous task identifying each axis structure group (rows in Fig. 1a)

by button press in the same manner.

fMRI Data Collection and Preprocessing
MRI scanning was performed at USC’s Dana and David Dornsife

Cognitive Neuroscience Imaging Center on a Siemens Trio 3-T scanner

using a 12-channel head coil. T1-weighted structural scans were

performed on each subject using a magnetization-prepared rapid

gradient echo (MPRAGE) sequence (TR = 1950 ms, TE = 2.26 ms, 160

sagittal slices, 256 3 256 matrix size, 1 3 1 3 1 mm voxels). Functional

images were acquired using an echo planar imaging pulse sequence

(TR = 2000 ms, TE = 30 ms, flip angle = 65�, in-plane resolution 2 3 2

mm, 2.0 or 2.5 mm--thick slices, 31 roughly axial slices). Slices covered

as much of the brain as possible, though often the temporal poles and

the crown of the head near the central sulcus were not scanned (due to

large head size).

Subjects were scanned in 7 or 8 scanning runs of 55 trials each. Each

trial consisted of a single stimulus presentation for 200 ms, followed by

a 7.8 s fixation. Stimuli were presented in pseudorandom order

(counterbalanced for axis groups).

fMRI data were collected using PACE online motion correction

(Thesen et al. 2000). Additionally, data were temporally interpolated to

align each slice with the first slice acquired, motion corrected

(trilinear--sinc interpolation), and temporally smoothed to remove

low-frequency drift (kernel = 3 cycles/run). All preprocessing was

carried out using Brain Voyager QX version 2.08 (Brain Innovation,

Mastricht, the Netherlands) (Goebel et al. 2006). Data were not

smoothed or normalized; ROIs were transformed to the functional

data’s space, and all pattern analysis was done in native functional

space. The raw activation values for time points from 4 to 6 s after

stimulus onset (2 sequential TRs worth of data) on each trial were

averaged to create a single activity value per trial. All trial values were

Figure 1. (a) Nine representative images (of the 54 images in the stimulus set).
Each row shares the same medial axis structure (‘‘axis groups’’); each column shares
the same component parts (‘‘part groups’’). View groups are marked by oriented bars
(near vertical, tilted right, and tilted left). Bars were not displayed to subjects.
(b) Stimuli as they appeared to the subjects, in contrast-equated off-white on a dark
gray background. (c) Average Gabor-jet distance between all pairs of stimuli within/
between each group.
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converted to z scores (by run) prior to classification analysis to

minimize baseline differences between runs.

Because each trial consisted of only a single presentation of an image

(rather than a block of different images of the same class), it was

possible to relabel trials and attempt to classify different groups within

the same data set. Thus, we were able to compare how well a given

region distinguished objects with different axis structures and compare

that with how well the same region distinguished different orientations

of the composite objects, using the same data.

Regions of Interest
ROIs (Fig. 2a) were defined using independent localizer scans and

anatomical criteria. Rotating contrast-reversing wedges were used to

define V1--V4 and V3A (as in Engel et al. 1997; Sereno 1998). Wedges

spanned 8.9 visual degrees from center to periphery and 45 radial

degrees. Lateral occipital cortex (LO) was defined as the region more

active to objects than scrambled versions of the same objects

(t contrast with the false detection rate set at P < 0.05), spanning the

region from the dorsal part of V3 (dorsally) to V4 (ventrally)

(Grill-Spector et al. 1999). We also defined a ventral visual region

encompassing the fusiform face area, the parahippocampal place area,

and shape-selective regions in the posterior fusiform gyrus (pFs) by

a contrast of faces + scenes + objects > scrambled objects. (These

regions were initially analyzed separately, but no differences were

found, so they were grouped together for simplicity.) Stimuli for the

object/face/place localizer subtended ~6� of visual angle (approxi-

mately the same size as the images in the main experiment). A region in

the intraparietal sulcus (IPS) was defined by mixed anatomical and

functional criteria: we took the region extending dorsally up the medial

bank of the IPS from V3A to a region that showed increasing activation

to increasing working memory load (as in Xu and Chun 2006). Finally,

in 5 of the 8 subjects, unilateral ROIs in the right and left motor cortex

were defined along the anterior banks of the central sulcus. (In the

other 3 subjects, our scanning protocol covered less than 50% of the

motor cortex due to larger head sizes, so no ROIs were defined.)

Since the ROIs varied substantially in size and mean activation level,

both of which have been shown to influence classification performance

(Cox and Savoy 2003; Smith et al. 2010), we imposed 2 further

restrictions on each region. First, for each ROI, we sorted the voxels

according to their overall responsiveness (t statistic) to all axis groups

and chose only voxels that showed a significant (t > 2, P < 0.05

uncorrected) response to a contrast of all stimulus conditions versus

fixation (in the training runs only). Second, we chose only the 300

most-responsive voxels in each region to keep the number of voxels

constant across all ROIs.

fMRI Classification Analyses
We used a linear support vector machine (SVM) classifier to assess

whether the 3 axis groups elicited reliably different patterns of

activation in each ROI. Linear SVMs have been widely used in fMRI

multivoxel pattern classification studies (Eger et al. 2008; Ester et al.

2009; e.g., Kamitani and Tong 2005; Ostwald et al. 2008) and have been

shown to be more sensitive at detecting pattern differences than other

multivariate measures (Cox and Savoy 2003). Our SVM classifier was

implemented via the Python Multivariate Pattern Analysis package

(Hanke et al. 2009; www.pymvpa.org) using the LibSVM library. The

soft margin parameter (c) was scaled for each subject and ROI by

dividing by the square root of the norm of the data. The SVM classifier

was trained on all but one of the fMRI runs and tested on the withheld

run. Each of the runs were withheld as the test set once in an n-fold

cross-validation, for a total of 440 test trials in subjects with 8 runs and

385 trials in the 1 subject with 7 runs.

Results

Behavioral Results

Subjects were readily able to assign each object to its

appropriate ‘‘part group.’’ Mean accuracy was 98.1% correct

(essentially at ceiling) and mean reaction time (RT) was

751 ms, with no reliable differences across experimental runs

in RTs or error rates (repeated measures analysis of variance

[ANOVA], both Fs7,7 < 1.2, P > 0.30). Nor were there any

reliable differences between part groups, orientations, or axis

structures in either RTs or error rates. It should be noted that

although subjects were making judgments about objects’ parts,

there was a trend toward differences in RTs for objects

belonging to different axis families, most likely because of

greater self-occlusion between parts in the third axis family in

several of the views (Fig. 1a, third row), which made part

judgments slightly more difficult. (For RT differences in judging

part families, F7,2 = 3.27, P = 0.07; all other Fs < 1.75, P > 0.13.)

In the complementary task (conducted in separate sessions),

the same subjects were also highly accurate (98.6%) in

assigning each object to its axis group with mean RTs of

794 ms, again with no indication of improvement across runs

(after training) in either RTs or error rates (both Fs7,7 < 1.1,

P > 0.40). Subjects showed immediate understanding of the

task with near ceiling performance. They identified the first

medial axis family (Fig. 1a, row 1) more quickly than the other

two: mean RT of 743 ms for that family versus 812 and 827 ms

for the other two, F7,2 = 6.03, P = 0.013, post hoc test (Tukey’s

honestly significant difference [HSD]) for axis family 1 versus

both 2 and 3, P < 0.05. This advantage for the first family was

likely due to its distinctive elongation relative to the other

structures. Unlike the part-group task, subjects were also

slower at judging the axis structure of the stimuli rotated the

farthest from vertical: for the most extreme orientations mean

RT = 835 ms; for vertical, 785 ms; F7,5 = 10.16, P < 0.0001;

Tukey’s HSD post hoc test comparing vertical with extreme

orientations, P < 0.05. All 3 axis groups—even the first group

(Fig. 1a, row 1) which, as noted previously, appeared distinctive

Figure 2. (a) ROIs for a representative subject, displayed on a posterior view of an
inflated brain. ROIs were defined using independent localizers and anatomical criteria.
Dotted lines represent the horizontal meridian, solid lines represent the vertical
meridian, asterisks represent the foveal confluence in each hemisphere, and the
dashed line marks the IPS. The ventral region contained face- and place-selective
voxels as well as object-selective voxels. Motor cortex ROI not shown. (b) Activation
maps of response to all stimuli (t values for contrast of all conditions--fixation).
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from the other two—showed significant costs of recognition

(greater RTs) at the orientations farthest from vertical.

Univariate fMRI Results

We saw activation throughout generally accepted visual areas

(Fig. 2b) in response to all of our conditions, with the most

(and most significant) activation in the lateral occipital cortex

and surrounding regions. (For BOLD response curves for each

region, see Supplementary Results.)

fMRI Classification Results

All regions from V1 to LO were able to distinguish the 3

different axis structures (i.e., the 3 different arrangements of

the objects’ parts) significantly better than chance (all ts7 >

2.43, P < 0.05) (Fig. 3a). In V1 and V2, the classifier performed

slightly better at distinguishing different orientations of the

objects (although this difference was not significant). By the

level of V3, however, significantly more accurate classification

was obtained for distinctions between medial axis structures

than for distinctions between body orientations: t7 = 2.87, P =
0.02. In the ventral and parietal ROIs, the same trend was

observed, though overall classification performance did not

exceed chance: both t s7 < 1.90, P > 0.10. (See Supplementary

Table 1 for P values for all statistical tests. All t-tests are two-

tailed paired t-tests.)

To assess whether there was an interaction between stage in

the visual hierarchy and classification accuracy for axis

structure and orientation, we ran a 2-way repeated measures

ANOVA, with factors ROI (5 levels: V1, V2, V3, V4, and LO) and

CLASSIFIER TASK (2 levels: classify by axis structure, classify by

orientation). There was a significant interaction between ROI

and CLASSIFIER TASK, F4,28 = 6.53, P < 0.001.

A similar pattern of results was observed if we used exactly

the same number of voxels in each ROI (from 50 to 400 voxels;

Fig. 4) as well as if we used all voxels within each ROI. Note

that with fewer voxels fed to the classifier, V1 classified

orientation substantially more accurately than axis structure.

For 100-, 200-, and 250-voxel patterns, this difference was

significant in V1, t7 > 2.7, P < 0.05.

In order to assure that each axis family could be distin-

guished from both other axis families, we plotted the confusion

matrices of classifier responses. Confusion matrices for V3, V4

and LO (regions for which axis structure classification

exceeded orientation classification) are shown in Figure 5. In

V3, all groups could be distinguished above chance (all t s > 2.5,

P < 0.05) and in LO, 2 of the 3 groups could be distinguished

from the others (t s > 2.8 P < 0.05). For the third group (axis

family 2), the correct group was chosen most often, but the

classification accuracy fell short of significance, t = 1.92,

P = 0.09. In V4, none of the groups could be distinguished

from chance individually (t < 2.0, P > 0.08).

Even though the subjects were making explicit judgments on

each trial as to which part group each image belonged to (and

thus presumably attending to the features that distinguished the

different part groups), in none of the ROIs were part groups

more accurately classified than the axis structure groups.

Classification by parts was significantly more accurate than

chance in V1, t7 = 2.85, P = 0.02 and LO, t7 = 6.03, P < 0.0001.

There was only a trend toward classification by parts in LO being

better than classification by orientation, t7 = 2.15, P = 0.067. The

interpretation of the higher accuracy for part-group classifica-

tion in LO is complicated by the congruence with the subjects’

task. Nonetheless, the higher classification accuracy in LO is

noteworthy, particularly given the lack of sensitivity shown by

V2--V4 to the parts (vs. orientation).

For the 5 subjects for whom we had data from the motor

cortex, mean classification accuracy in the ROI contralateral to

the hand each subject used for his or her response was 41.0%

for the part groups versus 32.6% for axis groups and 32.0% for

orientation groups. Accuracy on the side ipsilateral to the

response hand was 35.9% for part groups, 31.8% for axis

groups, and 33.6% for view groups. This pattern of accuracy

serves as a sanity check (accurate classification of parts was to

be expected, given that subjects were making one-handed

responses to the part groups). It is also interesting to note that

classification accuracy for part families was approximately

equal to the accuracy observed in the visual regions for

classification by views or axis structures (Fig. 3); however,

statistically the accuracy for part classification fell short of

significance, most likely due to the limited number of subjects

(5 instead of 8); t4 = 2.65, P = 0.057.

Since the classifier was tested on novel instances (trials) of

each of the stimuli, and not completely novel stimuli, it is

possible that the voxels in each ROI (and thus the classification

algorithm) could have picked up on some idiosyncratic feature

of each axis structure group rather than axis structure per se.

For example, cells in macaque posterior inferotemporal cortex

have been shown to respond to particular combinations of

adjacent boundary curves (Brincat and Connor 2004), such as

those that might occur at the junction between 2 parts in our

stimuli. For a more rigorous test of whether these regions

represented axis structure and not more local features, we

trained the SVM classifier on trials of 2 of the 3 part groups and

tested it on the third (each part group was left out in turn in

Figure 3. SVM classifier results by ROI. (a) Mean classifier accuracy when classifier
was trained on all but one of the MRI scans and tested on the last scan. The dotted
line around the bar for classification by part identity indicates that the classifier task
matched with the subjects’ behavioral task. (b) Mean classifier accuracy when the
classifier was trained on 2 of the part families and tested on the third (test of
generalization to new stimuli sharing the same axis structure). Asterisks indicate
significant differences between axis structure and body orientation classification, the
upper dotted line shows classification accuracy in contralateral motor cortex, and
white diamonds at the bars’ peaks indicate significantly better-than-chance
classification: t7 [ 2.43, P \ 0.05. Error bars are standard error of the mean.
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a 3-fold cross-validation). Note that we have specifically chosen

parts that varied in dimensions (e.g., curvature/pointedness,

convexity/concavity) that have been shown to modulate neural

activity in both human lateral occipital cortex (Op de Beeck

et al. 2008) and macaque inferotemporal cortex (Kayaert et al.

2003, 2005) and V4 (Pasupathy and Connor 1999), thus making

it less likely that objects with different parts will elicit similar

patterns of activation. Nonetheless, even when tested on

stimuli composed of different parts than the stimuli in the

training data, the classifier based on voxels in V3 and LO still

distinguished different axis structures above chance and better

than different body orientations (Fig. 3b; for all t and P values,

see Supplementary Table 1). Classification performance was

slightly lower overall than when trained and tested by runs, but

the classifier was also trained on fewer trials (2/3 of the data set

vs. 7/8 for training and testing by runs).

It is worth noting that there is a slight risk of circularity in

this analysis compared with our main analysis. In our main

analysis, SVM training and testing were performed on separate

scanning sessions, and voxel selection was performed based

only on the training sessions. In this analysis, the training and

testing data were drawn from interleaved trials in the same

scanning sessions, and voxel selection was performed based on

a main-effect analysis spanning all the scans. We call the risk

‘‘slight’’ because, for our data, selection based solely on the

training set chose 91.3 ± 1.2% of the same voxels as selection

based on the whole data set (averaged across subjects, runs,

and ROIs). Furthermore, more than 99% of the 200 most-

responsive voxels were chosen by both methods of voxel

selection. In other words, the voxels that were (perhaps

spuriously) selected by ‘‘bad’’ method but not the ‘‘good’’

method constituted a small minority (~8.7%) of the total

number of voxels and had smaller response magnitudes than at

least 2/3 of the voxels in each ROI. Thus, the different methods

for voxel selection were unlikely to have had a strong effect on

classification accuracy.

It is possible that some statistical dependence could exist

between pairs of the conditions due to training and testing on

interleaved trials, but we find that highly unlikely as well. First,

the trials were widely spaced (8 s apart) and counterbalanced

such that each axis group appeared before every other an equal

number of times, making it highly unlikely that trials for one

axis group were systematically biased by interaction with other

axis groups. Second, we still observed poor classification results

in some regions (in V3A, V4, ventral, and IPS regions),

indicating that whatever dependence there might have been

between the training and testing sets, that dependence was

not sufficient to explain the above-chance classification.

Figure 4. Classification accuracy for equivalent numbers of voxels in each ROI. Error bars are standard error of the mean.

Figure 5. Classifier confusion matrices for V3--LO. Asterisks indicate significantly above-chance performance (two-tailed t test, P \ 0.05). Error bars are standard errors of the
mean.
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Furthermore, our most critical measure is a comparison

between 2 classification schemes (classification by common

axis structure and by common body orientation), both of which

should have benefited equally from any statistical dependence

between the training and testing sets—and yet the advantage of

classification by axis structure over classification by body

orientation remained.

We performed a similar test to see whether accurate

classification of medial axis structures could be achieved over

different views of the objects: we trained the classifier on 5 of

the views of each object and tested it on the sixth. Each

orientation was left out as the testing set once in successive

cross-validation steps. Overall, classification accuracy for axis

structure groups was above chance for V1--V3, V3A, and LO,

t7 > 3.38, P < 0.05 (Fig. 6). For a more rigorous test of whether

axis structure groups elicited consistent patterns over different

views, we separated out the different cross-validation splits of

the data and recombined them in 2 ways. First, we took the

average accuracy for cross-validation splits for which the

extreme orientations (ca. –45� and ca. +67.5�) were left out as

the testing set—that is, the data sets for which the classifier had

to extrapolate to a novel orientation. Second, we took the

average accuracy for splits in which one of the intermediate

orientations (ca. –22.5� to ca. +45�) was left out as the testing

set—that is, data sets for which the classifier could interpolate

to a novel orientation. For V3, V4, and LO (all regions showing

an increased sensitivity to axis structure vs. body orientation),

classification accuracy was significantly better in trials for

which the classifier could interpolate: t7 > 2.7, P < 0.05 (Fig. 6).

The only reversal of this trend was in the parietal lobe, for

classification by part families (which matched with the

subjects’ task), although this trend did not reach significance:

t7 = 1.42, P = 0.20.

Because the overall classification accuracy was relatively low

compared with other MVPA classification studies, we used

2 additional nonparametric measures—bootstrapping random

assignments of trial labels and group assignments—to de-

termine whether classification accuracy for axis structure

groups was significantly better than chance (see Supplemen-

tary Methods). These more conservative tests also confirmed

the statistical significance of the results (see Supplementary

Table 1).

Since a SVM is sensitive to even small differences in mean

activation, above-chance classification in the range that we

observed (~36% to 39%) could potentially be achieved even

using a one-dimensional measure such as the mean activity if

a simple threshold would suffice to distinguish one group from

the others for a sufficient number of trials. Thus, the

classification analysis was repeated using only the mean activity

for each ROI instead of the full pattern of voxel activity in each

ROI (as in Meyer et al. 2010). All regions from V1 to LO showed

greater classification accuracy when the voxel patterns were

used compared with when the mean was used (see circles in

Fig. 3; for statistical values, see Supplementary Table 1),

indicating that the information about axis structure was

present in the spatial profile of activation rather than simply

the average activation of each region.

Because some of the subjects had training on the axis

structure stimuli before the scanning session, another possibil-

ity is that the accurate classification of axis structures was

a result of learning rather than a stimulus-driven effect.

Training on stimulus classes (though typically over several

sessions) has been shown to change BOLD fMRI responses in

shape-selective areas (Op de Beeck et al. 2006; Yue et al. 2006).

To test for an effect of learning, we split our subjects into

2 groups—those who had performed the axis structure

behavioral task before the scan, and those who had not—and

ran a 2-way repeated measures ANOVA, with factors TASK

ORDER (axis first, parts first) and CLASSIFICATION ACCURACY

(axis classification, orientation classification), for each of our

ROIs. We found no main effect of TASK ORDER (all F s1,4 < 1.8,

P > 0.25) nor any interaction of TASK ORDER and CLASSIFI-

CATION ACCURACY, all F s1,4 < 0.7, P > 0.40. We also found no

relationship between multivoxel classification accuracy and RT

variability between conditions nor between classification

accuracy and trial-to-trial variation in RT (see Supplementary

Results).

One aspect of behavior that did covary with classification

accuracy was mean RT across conditions for the part judgment

task performed during the fMRI data acquisition. Overall RT

was negatively correlated with classification accuracy in LO

(r = –0.79, P < 0.05). It is somewhat surprising that RTs in the

part task, but not the axis task, should negatively correlate with

classification accuracy. (Greater overall RTs in the part task

would not mean more difficulty ‘‘processing’’ axis structure.)

However, since the task was reported by all subjects to be

extremely easy, long RTs may be reflective of boredom, fatigue,

or other disengagement with the task and the stimuli.

Disengagement, in turn, could likely result in less BOLD signal

and lower classification accuracy.

Discussion

MVPA revealed more accurate classification of objects with the

same medial axis structure than objects with the same body

orientation in intermediate visual areas, beginning in V3. This

was not a low-level (retinotopic) effect, since V1 showed the

opposite ordering of classification accuracy, with orientation

> axis structure (Figs 3a and 4), and a simple computational

model of V1 showed greater similarity among objects sharing

the same orientation than objects sharing the same axis

structure (Fig. 1c). V3’s pattern of classification accuracy (axis

structure > orientation) was maintained when the classifier

was tested on stimuli not used in the training set (Fig. 3b),

Figure 6. Classification accuracy when the classifier was trained and tested on
stimuli with different body orientations. Bars represent average classification accuracy
across all splits of the data and asterisks indicate classification accuracy significantly
greater than chance (P \ 0.05). Filled markers (triangles and circles) indicate
significant difference (P \ 0.05) between interpolation and extrapolation splits. The
dotted line around the bar for classification by part identity represents that the
classifier task matched with the subjects’ behavioral task.
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indicating that V3 voxels are sensitive to arrangements of

medial axes despite considerable variation in other dimensions.

Structural information present in V3, V4, and LO was still

somewhat orientation dependent in that the SVM could not

extrapolate to classify axis structures outside the range of

trained orientations (Fig. 6). Rather than viewing this as a failure

to achieve full view invariance, we suggest that encoding of

relations between parts (at least at the level of V3) specifies

gravitational relations such as ‘‘top-of’’ as well as axis structural

relations. Indeed, rotating objects in plane incur costs in object

identification (Jolicoeur 1985; Tarr and Pinker 1989; Hayward

et al. 2006), so full 2D rotation invariance would not be an

accurate characterization of human vision (Hummel and

Biederman 1992).

Relation to Other Work

Compared with V1 and V2, not much is known about V3. Most

cells in macaque V3 show orientation tuning, sometimes with

multipeaked tuning curves (Felleman and Van Essen 1987;

Anzai et al. 2007). Many V3 cells also show end stopping and

binocular disparity tuning (Felleman and Van Essen 1987;

Gegenfurtner et al. 1997). V3 receives direct inputs from V1

with major inputs from layer 4B, which is associated with the

magnocellular pathway and processing of low spatial fre-

quency information (Felleman et al. 1997). These results are

compatible with a role for V3 in encoding medial axis

structure (though the stimuli used in the cited studies were

too simple for any effect of axis structure to be evident). V3 is

arguably the last visual stage before the ventral and dorsal

pathways diverge (Ungerleider and Mishkin 1982; Felleman

and Van Essen 1991). The dorsal stream has been implicated

in spatial reasoning (e.g., mental rotation tasks), whereas the

ventral stream has been implicated in the recognition of

objects despite variation in view (Gauthier et al. 2002; Vanrie

et al. 2002; Wilson and Farah 2006). Since V3 projects both

dorsally and ventrally, medial axis information computed by

V3 could feed into both processes.

LO has been implicated in the processing of between-part

relations in studies of patient SM by Behrmann and colleagues

(Behrmann et al. 2006; Konen et al. 2011). SM, who had a lesion

in ventral LO, had difficulty distinguishing objects differing only

in the relations between their parts, despite a preserved ability

to detect variations in part shape. SM’s lesion was clearly

anterior to V3 (Konen et al. 2011), suggesting that structural

computations in V3 may not be ‘‘read out’’ until the signal has

reached LO. LO also shows strong sensitivity to between-object

relations, independent of the objects’ absolute spatial positions

(Kim and Biederman 2010; Hayworth et al. 2011).

Why Was the Difference in Classification Accuracy
between Orientation and Axis Structure Not Greater in
V1?

Though classification accuracy for axis structure and orien-

tation was comparable for larger voxel patterns, when fewer

V1 voxels were used for classification (e.g., 100 voxels vs. 400

voxels, Fig. 4), V1 did classify orientation significantly more

accurately than axis structure. Thus, the most-responsive

voxels in V1 were indeed most selective for orientation. The

comparable performance for classification by body orientation

and axis structure with larger voxel patterns may be due to

a ceiling effect; no region in our study classified any parameter

(axis structure, parts, or orientation) better than ~42%.

Why the Lower Accuracy for Classification of Parts versus
Axis Structures?

Voxels in LO can distinguish ‘‘pointy’’ objects from smoothly

curved or blocky objects (Op de Beeck et al. 2006, 2008).

However, all of the objects in the present investigation

contained some blocky parts, some curved parts, and some

pointy parts. Thus, classification of part groups was likely more

difficult for lack of a single (nonaccidental) distinguishing

shape attribute.

Why the Low Classification Accuracy Overall?

The fMRI signal for single trials is much noisier than the signal

for blocks of sequentially presented objects. However, our

design depended critically on single trial presentations (so we

could relabel trials to reflect different aspects of the stimuli).

We thus sacrificed a degree of fMRI signal strength for

theoretical clarity. In addition, to achieve control of stimulus

features, the images we used were far more similar overall than

stimuli used in many other multivoxel experiments (e.g., Haxby

et al. 2001; Eger et al. 2008; Kriegeskorte et al. 2008), which

differed in color, texture, and form, as well as semantic

category, familiarity, behavioral utility, and evolutionary signif-

icance. Thus, classification accuracy for our stimuli might

reasonably be expected to be lower since successful classifi-

cation must depend on specific subtle differences in shape.

A final reason for reduced accuracy is that different features are

encoded by different neurons within single voxels. For

example, different neurons in V4 may encode color or contour

curvature (Zeki 1973; Pasupathy and Connor 1999, 2001).

Responses to features other than axis structure—for example,

local boundary contour curvature—would be manifested as

noise in our experiment.

Interpretation of MVPA Results

Given the certainty that multiple features are encoded by V3

neurons, how should above-chance classification accuracy for

medial axis structure be interpreted? One possibility is that

there are simply more neurons tuned for axis structure than for

orientation in V3 and subsequent regions. However, fMRI

signals are biased toward signals that are mapped across the

cortex at the scale of fMRI voxels (Drucker and Aguirre 2009;

Freeman et al. 2011). Thus, another plausible interpretation for

our findings is that there is a change in the organization of the

representation in V3 that favors readout of axis structure at the

scale of fMRI. Many theorists have suggested that the cortex is

organized to minimize wiring length for critical computations

(Allman 1999; Cherniak et al. 2004; Chklovskii and Koulakov

2004). Thus, either interpretation—a change in the proportion

of neurons encoding axis structure or a change in cortical

organization (or a combination of both)—is consistent with

a role for V3 in encoding medial axis structure. (For further

discussion of the role of axis structure compared with other

dimensions, see Supplementary Material.)

The lower classification accuracy in the ventral ROI (vs. LO)

was somewhat surprising, given the known role for the

posterior fusiform gyrus in encoding shape (Haxby et al.

2001; Kourtzi and Kanwisher 2001; Hayworth and Biederman

2006). However, several other studies have also found poorer

635Cerebral Cortex March 2013, V 23 N 3

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/23/3/629/314527 by guest on 19 April 2024

http://www.cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhs046/-/DC1
http://www.cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhs046/-/DC1
http://www.cercor.oxfordjournals.org/lookup/suppl/doi:10.1093/cercor/bhs046/-/DC1


classification of novel objects in the posterior fusiform gyrus

than in LO (Williams et al. 2007; Op de Beeck et al. 2008;

Drucker and Aguirre 2009). Again, this may reflect a change in

the organization of the region—there may still be neurons

sensitive to axis structure that are not clustered sufficiently to

differentially influence the BOLD signal in different voxels.

Alternatively, several studies have suggested that regions in

ventral temporal cortex respond to particular semantic

categories (e.g., animals, body parts, faces) more than visual

shape features per se (Kiani et al. 2007; Mahon et al. 2009).

Conclusions

Our results demonstrate that information about the relative

positions of an object’s parts, characterized by its medial axis

structure, is encoded at particular retinotopic (or gravitational)

orientations in V3 and successive visual stages. Clearly, axis

structure is not the only feature encoded by V3 or any of the

other regions, nor does the entire world look like stick figures.

But facile object classification is critically dependent on

specification of the relations between parts—relations that

are well defined by axis structure. Many of the categories of

objects that have been shown to be represented in anterior

ventral visual regions such as tools and animals differ greatly in

their medial axis structures. Moreover, spatial abilities known

to be mediated by the parietal lobe (such as mental rotation)

may rely on computation of medial axis structures (Just and

Carpenter 1976). Thus, a representation of medial axis

structure in V3 could provide a link between local feature

tuning in V1 and higher order processing in both the dorsal and

the ventral visual pathways.

Supplementary Material

Supplementary material can be found at: http://www.cercor.

oxfordjournals.org/
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