D1 but not D5 Dopamine Receptors Are Critical for LTP, Spatial Learning, and LTP-Induced arc and zif268 Expression in the Hippocampus

Recent evidence suggests that glutamatergic and dopaminergic afferents must be activated to induce persistent long-term potentiation (LTP) in the hippocampus. Whereas extensive evidence supports the role of glutamate receptors in long-lasting synaptic plasticity and spatial learning and memory, there is less evidence regarding the role of dopamine receptors in these processes. Here, we used dopamine D1 receptor knockout (D1R−/−) mice to explore the role of D1R in hippocampal LTP and its associated gene expression. We show that the magnitude of early and late phases of LTP (E-LTP and L-LTP) was markedly reduced in hippocampal slices from D1R−/− mice compared with wild-type mice. SCH23390, a D1/D5R antagonist, did not further reduce L-LTP in D1R−/− mice, suggesting that D5Rs are not involved. D1R−/− mice also showed a significant reduction of D1R-induced potentiation of N-Methyl-D-aspartic acid-mediated currents, via protein kinase activated by cyclic adenosine 3′,5′-monophosphate activation. Finally, LTP-induced expression of the immediate early genes zif268 and arc in the hippocampal CA1 area was abolished in D1R−/− mice, and these mice showed impaired learning. These results indicate that D1R but not D5R are critical for hippocampal LTP and for the induction of Zif268 and Arc, proteins required for the transition from E-LTP to L-LTP and for memory consolidation in mammals.

Keywords: behavior, cognition, dopamine, knockout, LTP, memory, water maze

Introduction
Glutamate receptors, in particular the NMDA receptor (NMDAR), are known to be central to long-term potentiation (LTP), learning, and memory (Malenka and Bear 2004). However, increasing evidence suggests that dopamine is also involved in the expression of activity-dependent synaptic plasticity as well as in behavioral learning and learning-associated immediate-early gene expression (O’Carroll and Morris 2004; Lisman and Grace 2005). Intact dopaminergic input is necessary for long-term changes in synaptic efficacy in different brain areas including the cortex (Gurden et al. 1999; Huang et al. 2004), the striatum (Calabresi et al. 1992; Picconi et al. 2003), and the hippocampus (Huang and Kandel 1995; Li et al. 2003). Similarly, normal dopaminergic activity appears essential for various forms of learning and memory because dopaminergic dysfunction in the prefrontal cortex or the hippocampal formation significantly alters spatial learning, goal-related behavior, and short- and long-term memory in rodents and nonhuman primates (Whishaw and Dunnet 1985; Williams and Goldman-Rakic 1995).

It is still unclear whether LTP is the mechanistic underpinning of memory, although much evidence is consistent with the notion that it underlies the formation and initial storage of associative memory (Pastalkova et al. 2006; Whitlock et al. 2006). The hippocampus, which plays a key role in associative memory networks and spatial memory, is the site of well-documented long-lasting changes in synaptic plasticity and receives strong dopaminergic input from midbrain dopaminergic neurons (Huang et al. 1992). It has been shown that exposure to novelty, a phenomenon known to release dopamine (Ljungberg et al. 1992), facilitates dopamine-dependent LTP induction (Li et al. 2003) via D1-class receptors (D1/D5R). Studies in D1 receptor knockout (D1R−/−) mice suggest that this receptor is essential for spatial memory tasks (Smith et al. 1998; El-Ghundi et al. 1999) and LTP maintenance (Matthies et al. 1997). However, the specific roles played by D1R and D5R in LTP are unknown due to the lack of ligands able to discriminate between these 2 receptors. Nevertheless, by using antagonists against D1/D5Rs, it has been concluded that the activation of any of these receptors is crucial for the enduring synaptic changes observed during the late phase of LTP (L-LTP) (Frey et al. 1991; Huang and Kandel 1995; Swanson-Park et al. 1999; Lemon and Manahan-Vaughan 2006). This L-LTP is dependent on new protein synthesis and lasts more than 3 h (Sajikumar et al. 2005). However, the role of D1/D5Rs in early LTP (E-LTP), which is protein synthesis independent, is less clear. Whereas some authors found no effect of D1/D5R antagonist on E-LTP (Huang and Kandel 1995; Huang et al. 2004), others found that D1/D5R activation enhances E-LTP (Otmakhova and Lisman 1996). Among the genes activated for the transition from E-LTP to L-LTP, the IEGs zif268 and arc (activity-regulated cytoskeletal protein) are critical and have been implicated in the expression of long-term memories (Guzowski et al. 2000; Jones et al. 2001) and glutamate- and dopamine-mediated synaptic plasticity (Moratalla et al. 1992; 1996; Konradi et al 1996; Tan et al. 2000; Pavón et al. 2006; Rodrigues et al. 2007).

In the present study, we used genetically engineered mice lacking the D1R to establish the role of D1 and D5 dopamine receptors on synaptic plasticity, E- and L-LTP, and in the activity-dependent gene expression of zif268 and arc associated with both, synaptic plasticity and learning and memory processes.

Materials and Methods
Animals
Mice lacking the dopamine D1R were generated by homologous recombination as described previously (Xu et al. 1994; Moratalla et al. 1996). Male and female wild-type (WT) and homozygote D1R−/− mice used in this study were derived from the mating of heterozygous mice. Genotype was determined by Southern blot analysis (Xu et al. 1994; Moratalla et al. 1992). Male and female D1R−/− mice were 4-6 months old and were housed in groups of 6 per cage in a temperature-controlled room (22 °C) on a 12-h dark-light cycle with a 12-h light-dark cycle with a 12-h light-dark cycle.
free access to food and water. Animals were treated in accordance with European Community guidelines (86/609/EEC), and the procedures were approved by the Bioethical Committee at the Cajal Institute.

Pharmacological Agents and Reagents

D,L-2-amino-5-phosphophentanoic acid (AP5), bicuculline methiodide (BMI), and 6-cyano-7-nitroquinolinic acid-2,3-dione disodium (CNQX) were obtained from Sigma (Madrid, Spain); KT5720, SCH23390, and SKF81297 from Tocris (Avonmouth, UK). Drugs were prepared as stock solutions, stored frozen in the dark, and diluted to final concentration immediately before use. Stock solutions of APS (25 mM), CNQX (20 mM), and SCH23390 (1 mM) were prepared in distilled water. Stock solutions of KT5720 (1 mM) were prepared in dimethylsulfoxide.

Extracellular Recordings

Transverse hippocampal slices (400 μm) were prepared from female and male mice (12-18 weeks old) using conventional methods. D1R mice and WT mice were used on alternate days. Mice were anesthetized with halothane and decapitated. Hippocampi were removed and dropped in ice-cold Krebs-Ringer bicarbonate (KRB) solution containing (in mM) the following: 119 NaCl, 26.2 NaHCO3, 2.5 KCl, 1 KH2PO4, 1.3 MgSO4, 2.5 CaCl2, and 11 glucose. This solution was prepumped with 95% O2 and 5% CO2. The dorsal hippocampi were sliced with a manual tissue chopper and placed in a holding chamber for more than 3 h at room temperature. A single slice was transferred to a submersion recording chamber, where it was continuously perfused (1.8-2 mL/min) with KRB warmed to 31-32°C. Extracellular field excitatory postsynaptic potentials (fEPSPs) were recorded with a tungsten microelectrode (1 MΩ) positioned in the stratum radiatum of CA1 area and connected via a headstage (AI-801, Axon Instruments, Foster City, CA) to a CyberAmp 330 signal conditioner (Axon Instruments). Field fEPSPs were evoked by stimulating Schaffer collateral-commissural (SCC) axons with biphasic electrical pulses (20-60 μA, 100 μs, and 0.066 Hz) delivered through bipolar tungsten microelectrodes (0.5 MΩ) placed in CA1 midstratum radiatum. Electrical pulses were supplied by a pulse generator AMP1 Mod Master 8 (Jerusalem, Israel) connected to a biphase stimulus isolator unit in constant current mode (Cibertec, Madrid, Spain). Stimulation intensity was adjusted to evoke fEPSP slopes that were 40% of the maximal responses. A stable baseline was recorded during at least 20 min. Data were normalized with respect to the mean values of fEPSP slope recorded during this period. E-LTP was induced by a high-frequency stimulation (HFS) train (100 Hz, 1 s, at test intensity) and L-LTP by 3 HFS trains at 10-min intervals. Evoked responses were digitized at 25 kHz using a Digidata 1200AE-BD or 1320A (Axon Instruments) board and stored in an immersion recording chamber, where it was continuously perfused (1.8-2 mL/min) made using the patch-clamp technique as previously described (Martin et al. 2003) using a Digidata 1232A interface and the pCLAMP 9.0 software (Axon Instruments).

Spatial Navigation: Morris Water Maze

Spatial learning and memory were assessed in D1R+/- and WT (n = 15) littermates using the Morris water maze. The maze consisted of a circular tank (100 cm diameter) filled with 21°C water located in a room with visible external cues. A hidden escape platform (6 x 6 x 35 cm), made of roughened Plexiglas, was submerged 1 cm under water in 1 of the 4 designated positions within the tank. During the acquisition trials (days 1-6), mice were trained to escape from water by swimming from variable starting points around the tank to the hidden platform and allowed to remain there for 15 s. Mice failing to find the platform within 60 s were guided to the platform and placed on it for 15 s. After each trial, mice were dried and returned to their home cages. All sessions were recorded by a video camera located above the tank. Mice received 4 trials per day, for 6 consecutive days, with an intertrial interval of 5-7 min, and their escape latency was recorded for each trial. In the probe trials (no platform), conducted on the first day (day 1) and 72 h after the last acquisition trial (day 9), mice were allowed to swim for 60 s. Time spent in the target quadrant, number of annulus crossings through the previous platform location, and swimming speed were recorded. Following the probe trial on day 9, all mice were given reversal trials in which the hidden platform was relocated diagonally to the previous position. A total of 12 trials over 5 consecutive days (day 9-11), 4 trials per day, were given, and escape latencies were recorded. In another experiment, naive groups of mice were subjected to cued training trials test and were trained to find a submerged platform marked with a local visible cue to test their nonspatial learning ability, motivation, and sensorimotor coordination. All mice were given a series of 8 trials over 2 consecutive days.

Locomotor Activity and Sensorimotor Tasks

Basal horizontal and vertical movements were recorded for D1R+/- mice (n = 22) and WT (n = 15) littermates as indicated (Xu et al. 1994; Centonze et al. 2003) using a Columbus Instruments, Columbus, OH) with a set of 8 individual cages measuring 20 x 20 x 28 cm. Horizontal movement was detected by 2 arrays of infrared beams, whereas a third array positioned 4 cm above the floor detected vertical movement. The software allowed a distinction to be made between repetitive interruptions of the same photobeam and interruptions of adjacent photobeams. This latter measure was used as an index of ambulatory activity. Mice were habituated to the cages in 15-min sessions for 3 days. During the test session, beam breaks were recorded for 60 min as a measure of basal locomotor activity. Visual acuity was assessed by the ability of a mouse to extend its forepaws when lowered gently by the tail toward a black surface as indicated by Lamberty and Gower (1990) in both genotypes of mice (n = 15 per genotype). Motor coordination was measured in the rotarod test (Ugo Basile, Rome, Italy) at fixed speed on 2 consecutive days. On each day, mice had a 10-min training session. The mouse was placed in the immobile rod, and the speed was turned on to 10 rpm. If the mouse fell from the rotarod during the training session, it was placed back on. Two hours after the training session, the performance of the mice was tested in a 3-min session. The latency to fall of the rotarod was measured for all animals in the 2 consecutive days.

Immunobiochemistry and Quantification Analysis for the Immediate-Early Genes zif268 and arc Induced after Tetanus

Appropriate transverse hippocampal slices used in the electrophysiologic studies were fixed in 4% paraformaldehyde overnight and cut into
pharmacological blockage of D1Rs during tetanus, we used 3 different (Zif268) for statistical analysis. For the experiments pertaining to the ±

Statistical Analysis

hippocampal sections maintained in the recording chamber. standard KRB. Basal conditions were obtained from nonstimulated were stimulated and recorded in the presence of 0.5

xylene, and coverslipped with Permount mounting medium. Quantifi-

cation analysis for Zif268- and Arc-positive nuclei in hippocampal sections was performed with the aid of an image analysis system (Analytical Imaging Station, Imaging Research Inc., Linton, UK) using a 40× lens. Before counting, images were thresholded at a standardized gray-scale level, empirically determined by 2 different observers to allow detection of stained nuclei from low to high intensity, with suppression of the very lightly stained nuclei. Thus, the number of positive nuclei for Zif268 and Arc was determined and was expressed as number of positive nuclei per square millimeter. Counts were obtained from 3 (Arc) and 4 (Zif268) hippocampal slices, each from a different animal and with 4–7 sections each slice. We considered n = 3 (Arc) or n = 4 (Zif268) for statistical analysis. For the experiments pertaining to the pharmacological blockage of D1Rs during tetanus, we used 3 different sets of experiments (3 slices each), in which slices from WT animals were stimulated and recorded in the presence of 0.5 μM SCH23390 or standard KRB. Basal conditions were obtained from nonstimulated hippocampal sections maintained in the recording chamber.

Statistical Analysis

Data are presented as mean ± standard error of mean. Statistics on behavioral values to assess genotype and trial differences in the water maze or differences between mean fEPSP slopes were performed using repeated measures 2-way analysis of variance where mouse genotype (WT and D1R−/− mice) and time (day of trials for water maze; or minutes after tetanus for electrophysiological studies) were entered as independent variables. Relevant differences were analyzed pair wise by post hoc comparisons with Tukey’s test or Bonferroni’s test. Normalized EPSP amplitudes, quadrant preferences, rotated fall latencies, and motor activity were analyzed using the Student’s t-test. For all statistical studies, a SigmaStat 2.03 program was used, and the threshold for statistical significance was set up at P < 0.05. SigmaPlot 9.0 software was used for graphics making.

Results

Schaffer Collateral -CA1 Pyramidal Neuron Synapses in D1R−/− Mice Exhibit Normal Basal Synaptic Transmission and Paired-Pulse Facilitation

We first established that basal SCC-evoked fEPSPs are similar in both types of mice. Under our experimental conditions, fEPSPs predominantly reflect the activation of AMPA glutamate receptors. We performed stimulus/response curves using a range of stimulus intensities (5–100 μA) in slices from WT (n = 14) and D1R−/− (n = 11) mice. There was no significant difference between these groups at any stimulus strength (F1,124 = 0.01, P = 0.9423, Fig. 1A). We also examined paired-pulse facilitation, consisting of pairs of homosynaptic stimuli separated by a short interval (20–250 ms). This kind of facilitation is caused by presynaptic mechanisms and has been used to detect changes in the synaptic release of glutamate (Issaconn et al. 1993). The paired-pulse facilitation ratio in D1R−/− mice was statistically indistinguishable from that evoked in WT mice (Fig. 1B, F1,105 = 1.78, P = 0.1845). These results indicate that the basal characteristics of excitatory synaptic transmission at SCC-CA1 pyramidal neuron synapses are not altered in D1R−/− mice.

E-LTP Magnitude Is Reduced in D1R−/− Mice

We next examined whether disruption of D1R expression affects the E-LTP induction. In WT mice (n = 6), the application of a single train of tetanization (100 Hz, 1 s) induced a slowly decaying synaptic potentiation that returned to baseline values about 80 min after the tetanus (Fig. 2A.A’). This potentiation matches the time course for E-LTP described by other authors (Abel et al. 1997). When the same tetanus was applied to slices from D1R−/− mice (n = 5), the resulting E-LTP was significantly smaller than in WT animals: at 60 min after tetanus, potentiation in D1R−/− mice was 103 ± 4 versus 118 ± 5% in WT (P < 0.05, Fig. 2A’). In addition, the potentiation in D1R−/− mice decayed faster than in WT mice, returning to baseline at 50–60 min after tetanus versus 90 min in WT animals. The difference in the magnitude of potentiation obtained in WT and D1R−/− mice was evident as early as 5–10 min after tetanus and remained statistically significant for the entire duration of the early phase (P < 0.05, Fig. 2A’), indicating that the lack of D1Rs affects early mechanisms of LTP induction.

L-LTP Is Reduced in D1R−/− Mice

The effects of dopamine D1/D3R antagonists suggest that one or both of these receptors are essential for the induction of the L-LTP in the hippocampal CA1 area (Frey et al. 1991; Huang and Kandel 1995; Swanson-Park et al. 1999; O’Carroll and Morris 2004). To specifically establish the role of dopamine D1 and D3Rs in this process, we investigated whether L-LTP is impaired in D1R−/− mice. We examined the magnitude of the enduring fEPSP potentiation (lasting at least 4 h) evoked by 3 trains of HFS at 10-min intervals and found that potentiation was significantly reduced in D1R−/− mice compared with WT animals at various
times after tetanus (Fig. 3A). Bonferroni post hoc analysis revealed significant differences in the magnitude of potentiation between D1R^{−/−} and WT animals beginning at 12 min after delivery of the third HFS train and persisting for at least 4 h after tetanus (Fig. 3A'). To determine whether D1Rs also play a role in LTP, we analyzed the effects of a D1/D5 antagonist on LTP in WT and D1R^{−/−} mice. We did not find any significant effect of 0.1 μM SCH23390, a D1/D5 antagonist, on LTP in slices from D1R^{−/−} mice (P > 0.05, Fig. 3B). As expected, we did see an inhibitory effect of 0.1 μM SCH23390 on LTP in WT mice (Fig. 3B'). Higher concentrations of SCH23390 had no further effect on LTP in WT mice (at 1 h after tetanus, potentiation was 172 ± 11% in 0.1 μM SCH23390 and 175 ± 10% in 0.5 μM SCH23390; at 4 h after tetanus, potentiation was 129 ± 1% in 0.1 μM SCH23390 and 128 ± 12% in 0.5-μM SCH23390; P > 0.05). Thus, pharmacological blockade and genetic inactivation of D1Rs have similar effects on LTP. Moreover, because SCH23390 does not further reduce the remaining L-LTP induced in D1R^{−/−} mice, we conclude that D1Rs do not play a role in L-LTP at SC-CA1 synapses in the hippocampus.

D1Rs Modulate NMDA-Mediated Postsynaptic Currents through a Protein Kinase A-Dependent Mechanism

Previous reports show that D1Rs can interact with NR1 or NR2 subunits of NMDARs modulating its activity (Lee et al. 2002; Pei et al. 2004). Such interactions might explain the reduction of potentiation observed soon after the application of a train of HFS in D1R^{−/−} mice (see Fig. 2A'), which could affect the induction of LTP. We therefore investigated whether D1Rs directly modulate NMDAR activity in hippocampal slices from D1R^{−/−} mice in pharmacologically isolated NMDAR-mediated EPSCs (see Materials and Methods). Under these conditions, superfusion with 50 μM SKF81297, a selective D1/D5 agonist, elicited an increase in EPSC amplitude (165 ± 18%; n = 6) (Fig. 4A, open circles) that was partially reversed during agonist washout (123 ± 17%; 50 min; n = 6) (Fig. 4A, open circles) in WT mice. This enhancement of the NMDA response in the presence of SKF81297 was different from the dopamine-induced decrease of NMDA-mediated fEPSP observed in hippocampus (Otmakhova and Lisman 1998b). The action of SKF81297 was specific for D1/D5 because 5 μM SCH23390, a selective antagonist of D1/D5, blocked EPSC enhancement by SKF81297 (Fig. 4A, open squares; n = 4). Bath application of 50 μM AP5 completely suppressed this current (data not shown) indicating that these are NMDA-mediated EPSCs. The SKF81297-induced enhancement of NMDA-mediated EPSCs also occurred in D1R^{−/−} mice and reached a maximum value in approximately 18 min (129 ± 19%; n = 6) (Fig. 4B, filled circles). The potentiated EPSCs gradually decreased to control values after washout (107 ± 11%; 50 min; n = 6). The selective antagonist SCH23390 also blocked the induction of EPSC enhancement by SKF81297 in D1R^{−/−} mice (Fig. 4B, filled squares; n = 4). However, the mean amplitudes of EPSC enhancement in WT and D1R^{−/−} mice were significantly different during SKF81297 perfusion (149 ± 5% for WT vs. 125 ± 7% for D1R^{−/−} mice, P < 0.01, Fig. 4C) and after washout (127 ± 6% for WT vs. 108 ± 4% for D1R^{−/−} mice, P < 0.05, 40–40 min and 127 ± 7% for WT vs. 107 ± 3% for D1R^{−/−} mice, P < 0.05, 40–50 min, Fig. 4C). These data indicate that D1Rs modulate NMDAR activity in the hippocampus.

D1/D5Rs are positively coupled to adenyl cyclase and the protein kinase activated by cyclic adenosine 3',5'-monophosphate (cAMP) (PKA) participates in both E-LTP and L-LTP (Frey et al. 1993; Blitzer et al. 1995; Abel et al. 1997; Otmakhova and Lisman 1998a). Therefore, we examined whether PKA is involved in D1R regulation of NMDAR activity. Figure 4D shows the time course of SKF81297 (50 μM) effects in the presence of KT5720 (1 μM), a PKA inhibitor, perfused 20 min before and during SKF81297 application. KT5720 blocked SKF81297-induced enhancement of NMDA-mediated EPSCs in both WT and D1R^{−/−} mice (Fig. 4D), indicating that D1Rs modulate NMDAR activity through a PKA-dependent mechanism.

D1R^{−/−} Mice Are Impaired in Spatial Learning and Memory in the Morris Water Maze

To investigate whether the decrease on hippocampal synaptic activity observed in D1R^{−/−} mice had any consequences in spatial learning, we tested D1R^{−/−} mice in the Morris water maze, a test known to require hippocampal function. Mice were trained to escape the water by swimming to a hidden platform guided by distal cues. Animals were first habituated to the water maze by introducing them into the pool. Mice were then given 4 training trials per day for 6 consecutive days. WT mice quickly learned to reach the platform as demonstrated by a progressive reduction in their escape latencies (Fig. 5), decreasing from an average of 40 s the first day to less than 8 s on day 6 (Fig. 5A, P < 0.001).
respectively, but the tetanization protocol was delivered in the presence (horizontal filled bar) of 0.1

Under the conditions used here, WT mice achieved the maximal decrease in escape latency by day 5. There were no differences in the escape latencies recorded on days 5 and 6. Extending the training period for a few more days did not cause any significant further reduction in the escape latency (data not shown). In sharp contrast, D1R−/− mice showed an average escape latency of 40 s on the first day and 29 s on the sixth day. These mutant mice exhibited a significant decrease in escape latency by the third day of training (P<0.05) but were unable to further reduce the latency with additional training (Fig. 5A). These results indicate that WT mice progressively reduce their escape latencies, whereas D1R−/− mice show no improvement after the third day, indicating a learning deficit in D1R−/− mice (P<0.005, Fig. 5A).

To evaluate long-term memory, we tested the mice in a retention probe trial, in which the submerged platform was removed. On the ninth day, 3 days after the end of the training period, we measured the time the mice spent in each quadrant of the pool (n=14 per genotype). WT mice spent selectively more time in the target quadrant (53±5%) compared with the first day of training (28±4%) and to the other quadrants (Fig. 5B, P<0.001). In contrast, D1R−/− mice spent only 33.8±2.3% of the time in the target quadrant on day 9 similar to the amount of time spent in this quadrant before training (27±3%) and significantly less than WT animals on day 9 (P<0.01). Thus, whereas WT mice increased the time spent in the target quadrant by 93%, D1R−/− animals showed no significant increase, indicating impairment in learning and memory. We also analyzed the number of crosses through the platform location site in the probe trial (performed on day 9) for both genotypes and found that D1R−/− mice performed significantly fewer crosses than WT mice (2.7±0.6 for the D1R−/− mice vs. 6.0±0.9 for WT, P<0.01; Fig. 5C). This suggests that D1R−/− mice are unable to remember the precise location of the platform.

Next, we analyzed relearning using the reversal test. During the 3 days following the probe trial, animals were trained to locate the platform in a new location (diagonal to the previous position). WT animals quickly learned the new location of the platform (P<0.01) but were unable to further reduce the latency with additional training (Fig. 5D). This suggests that D1R−/− mice are unable to remember the precise location of the platform.

indicating impairment in learning and memory. We also analyzed the number of crosses through the platform location site in the probe trial (performed on day 9) for both genotypes and found that D1R−/− mice performed significantly fewer crosses than WT mice (2.7±0.6 for the D1R−/− mice vs. 6.0±0.9 for WT, P<0.01; Fig. 5C). This suggests that D1R−/− mice are unable to remember the precise location of the platform.

Next, we analyzed relearning using the reversal test. During the 3 days following the probe trial, animals were trained to locate the platform in a new location (diagonal to the previous position). WT animals quickly learned the new location of the platform (P<0.01) but were unable to further reduce the latency with additional training (Fig. 5D). This suggests that D1R−/− mice are unable to remember the precise location of the platform.

indicating impairment in learning and memory. We also analyzed the number of crosses through the platform location site in the probe trial (performed on day 9) for both genotypes and found that D1R−/− mice performed significantly fewer crosses than WT mice (2.7±0.6 for the D1R−/− mice vs. 6.0±0.9 for WT, P<0.01; Fig. 5C). This suggests that D1R−/− mice are unable to remember the precise location of the platform.

indicating impairment in learning and memory. We also analyzed the number of crosses through the platform location site in the probe trial (performed on day 9) for both genotypes and found that D1R−/− mice performed significantly fewer crosses than WT mice (2.7±0.6 for the D1R−/− mice vs. 6.0±0.9 for WT, P<0.01; Fig. 5C). This suggests that D1R−/− mice are unable to remember the precise location of the platform.
D1 Receptors Are Critical for LTP, Gene Expression, and Memory

Mice Locomotor Activity and Motor Coordination in D1R

Although not all pyramidal cells respond to the tetanic stimulation with the same intensity, we found a large proportion of high-responding cells along the entire extension of the CA1 hippocampal area. Other neurons responded with lower levels of expression, and some show no increase in Zif268 or Arc expression. Although not all pyramidal cells respond to the tetanic stimulation with the same intensity, we found a large proportion of high-responding cells along the entire extension of the CA1 hippocampal area. Other neurons responded with lower levels of expression, and some show no increase in Zif268 or Arc expression.

In order to further demonstrate that the effects we see in the D1R−/− mice are exclusively due to the inactivation of D1R rather than to any compensatory mechanisms secondary to D1R deletion, we carry out similar experiments of gene expression after tetanic stimulation with pharmacological blockage of D1R rather than genetic inactivation. We found that the presence of D1R deletion, we carry out similar experiments of gene expression after tetanic stimulation with pharmacological blockage of D1R rather than genetic inactivation. We found that the presence of D1R inactivation of dopamine D1Rs produces a specific impairment in spatial learning and memory processes, which cannot be attributed to aberrant motor behavior, abnormal visual acuity, or decreased motivation.

HFS-Induced Expression of Zif268 and Arc in the Hippocampus Is Blunted in Both D1R−/− Mice and in WT Mice with Pharmacological Blockage of D1Rs.

We next examined the role of the D1R in the induction of zif268 and Arc elicited by high-frequency synaptic stimulation of the Schaffer collaterals in the hippocampus, the tetanization paradigm used to evoke L-LTP. The expression of these 2 genes is required for L-LTP for the consolidation of long-term memories (Guzowski et al. 2000; Jones et al. 2001; Kelley and Deadwyler, 2003) and for memory retrieval (Hall et al. 2001). In these experiments, fEPSPs were evoked and recorded every 15 s, and the tetanization protocol induced LTPs of similar magnitudes to those depicted in Figure 3. Basal expression of both Arc and Zif268 was obtained from hippocampal slices that were neither stimulated nor recorded (nonstimulated slices) but that were maintained in the recording chamber the same time than the slices undergoing tetanization. One hour after tetanic stimulation (3 trains of HFS at 10-min intervals) of Schaffer collaterals in hippocampal slices from WT mice, the expression of Zif268 and Arc in the pyramidal cells of the CA1 layer was significantly higher than in nonstimulated hippocampal sections (Fig. 7C,G). Although not all pyramidal cells respond to the tetanic stimulation with the same intensity, we found a large proportion of high-responding cells along the entire extension of the CA1 hippocampal area. Other neurons responded with lower levels of expression, and some show no increase in Zif268 or Arc expression. In sharp contrast, tetanic stimulation in hippocampal slices from the D1R−/− mice does not induce Zif268 or Arc expression (Fig. 7, Table 1). Basal hippocampal expression of both proteins was similar in D1R−/− and WT mice.

In order to further demonstrate that the effects we see in the D1R−/− mice are exclusively due to the inactivation of D1R rather than to any compensatory mechanisms secondary to D1R deletion, we carry out similar experiments of gene expression after tetanic stimulation with pharmacological blockage of D1R rather than genetic inactivation. We found that the presence of D1R inactivation of dopamine D1Rs produces a specific impairment in spatial learning and memory processes, which cannot be attributed to aberrant motor behavior, abnormal visual acuity, or decreased motivation.

Locomotor Activity and Motor Coordination in D1R−/− Mice

To test that the apparent learning deficit seen in D1R−/− mice was not due to motor impairment, we measured basal locomotor activity and vertical movements. In agreement with previous results (Xu et al. 1994; Centonze et al. 2003; Rodrigues et al. 2007), we found that D1R−/− mice were significantly more active than their WT littermates (P < 0.001, Fig. 6B), possibly due to the increase in glutamatergic activity found after D1R inactivation (Rodrigues et al. 2007). Whereas WT mice scored an average of 4000 photocell beam crossings in a 60-min period, D1R−/− mice had an average of 8000 crossings (Fig. 6B). However, vertical movements were similar in both genotypes (Fig. 6C). To test motor coordination, we used a rotarod test on 2 consecutive days and found no significant differences between WTs and D1R−/− mice. These behavioral results show that inactivation of dopamine D1Rs produces a specific impairment in spatial learning and memory processes, which cannot be attributed to aberrant motor behavior, abnormal visual acuity, or decreased motivation.

HFS-Induced Expression of Zif268 and Arc in the Hippocampus Is Blunted in Both D1R−/− Mice and in WT Mice with Pharmacological Blockage of D1Rs.

We next examined the role of the D1R in the induction of zif268 and Arc elicited by high-frequency synaptic stimulation of the Schaffer collaterals in the hippocampus, the tetanization paradigm used to evoke L-LTP. The expression of these 2 genes is required for L-LTP for the consolidation of long-term memories (Guzowski et al. 2000; Jones et al. 2001; Kelley and Deadwyler, 2003) and for memory retrieval (Hall et al. 2001). In these experiments, fEPSPs were evoked and recorded every 15 s, and the tetanization protocol induced LTPs of similar magnitudes to those depicted in Figure 3. Basal expression of both Arc and Zif268 was obtained from hippocampal slices that were neither stimulated nor recorded (nonstimulated slices) but that were maintained in the recording chamber the same time than the slices undergoing tetanization. One hour after tetanic stimulation (3 trains of HFS at 10-min intervals) of Schaffer collaterals in hippocampal slices from WT mice, the expression of Zif268 and Arc in the pyramidal cells of the CA1 layer was significantly higher than in nonstimulated hippocampal sections (Fig. 7C,G). Although not all pyramidal cells respond to the tetanic stimulation with the same intensity, we found a large proportion of high-responding cells along the entire extension of the CA1 hippocampal area. Other neurons responded with lower levels of expression, and some show no increase in Zif268 or Arc expression. In sharp contrast, tetanic stimulation in hippocampal slices from the D1R−/− mice does not induce Zif268 or Arc expression (Fig. 7, Table 1). Basal hippocampal expression of both proteins was similar in D1R−/− and WT mice.

In order to further demonstrate that the effects we see in the D1R−/− mice are exclusively due to the inactivation of D1R rather than to any compensatory mechanisms secondary to D1R deletion, we carry out similar experiments of gene expression after tetanic stimulation with pharmacological blockage of D1R rather than genetic inactivation. We found that the presence of D1R inactivation of dopamine D1Rs produces a specific impairment in spatial learning and memory processes, which cannot be attributed to aberrant motor behavior, abnormal visual acuity, or decreased motivation.

HFS-Induced Expression of Zif268 and Arc in the Hippocampus Is Blunted in Both D1R−/− Mice and in WT Mice with Pharmacological Blockage of D1Rs.

We next examined the role of the D1R in the induction of zif268 and Arc elicited by high-frequency synaptic stimulation of the Schaffer collaterals in the hippocampus, the tetanization paradigm used to evoke L-LTP. The expression of these 2 genes is required for L-LTP for the consolidation of long-term memories (Guzowski et al. 2000; Jones et al. 2001; Kelley and Deadwyler, 2003) and for memory retrieval (Hall et al. 2001). In these experiments, fEPSPs were evoked and recorded every 15 s, and the tetanization protocol induced LTPs of similar magnitudes to those depicted in Figure 3. Basal expression of both Arc and Zif268 was obtained from hippocampal slices that were neither stimulated nor recorded (nonstimulated slices) but that were maintained in the recording chamber the same time than the slices undergoing tetanization. One hour after tetanic stimulation (3 trains of HFS at 10-min intervals) of Schaffer collaterals in hippocampal slices from WT mice, the expression of Zif268 and Arc in the pyramidal cells of the CA1 layer was significantly higher than in nonstimulated hippocampal sections (Fig. 7C,G). Although not all pyramidal cells respond to the tetanic stimulation with the same intensity, we found a large proportion of high-responding cells along the entire extension of the CA1 hippocampal area. Other neurons responded with lower levels of expression, and some show no increase in Zif268 or Arc expression. In sharp contrast, tetanic stimulation in hippocampal slices from the D1R−/− mice does not induce Zif268 or Arc expression (Fig. 7, Table 1). Basal hippocampal expression of both proteins was similar in D1R−/− and WT mice.

In order to further demonstrate that the effects we see in the D1R−/− mice are exclusively due to the inactivation of D1R rather than to any compensatory mechanisms secondary to D1R deletion, we carry out similar experiments of gene expression after tetanic stimulation with pharmacological blockage of D1R rather than genetic inactivation. We found that the presence of D1R inactivation of dopamine D1Rs produces a specific impairment in spatial learning and memory processes, which cannot be attributed to aberrant motor behavior, abnormal visual acuity, or decreased motivation.
Quantification of Zif268- and Arc-positive nuclei in hippocampal sections revealed that a moderate number of neurons express constitutive levels of both genes in the nonstimulated hippocampus of both genotypes (see Table 1). However, in WT mice, tetanic stimulation significantly increased positive nuclei by 20-fold for Zif268 and 6-fold for Arc. Tetanic stimulation did not increase the number of Zif268- or Arc-positive nuclei in D1R−/− mice (an average of 179 ± 50 and 260 ± 89 positive nuclei per square millimeter for Zif268 and Arc, respectively) compared with nonstimulated slices (average of 128 ± 39 and 413 ± 28 for Zif268 and Arc, respectively). Pharmacological blockade of D1R in stimulated sections from WT mice inhibited the increase in the number of Zif268- and Arc-positive nuclei induced after tetanus in a similar way that occurred in the D1R−/− mice (Table 1). Altogether, these results indicate that the integrity of D1Rs is critical for induction of these genes by tetanization in the rodent hippocampus.

Discussion
In this study, we show that D1R−/− mice are significantly impaired in both E-LTP and L-LTP and showed a significant
reduction in the dopamine-induced potentiation of NMDA-mediated currents. We also show that the addition of SCH23390, a D1/D5 blocker, does not further reduced synaptic activity. Thus, we demonstrate that only the D1Rs and not the D5Rs are relevant for both forms of LTP. Moreover, there is no induction of \textit{zif268} and \textit{arc} following HFS in hippocampal slices from D1R−/− mice and in those slices from WT mice treated with SCH23390. In addition, or perhaps as a direct consequence of reduced LTP, D1R−/− mice exhibit impaired processing of spatial information in the Morris water maze confirming previous behavioral studies (Smith et al. 1998; El-Ghundi et al. 1999). Differences in genetic background do not account for this D1R−/− phenotype because the WT and knockout mice used in this study are the littermate progeny of more than 10 heterozygous crossings. Although we cannot rule out the possibility of developmental compensation mechanisms, histochemical comparison of D1R−/− and WT brain sections revealed no major differences (Xu et al. 1994; Moratalla et al. 1996).

\textbf{D1Rs Facilitate E- and L-LTP in the Hippocampus}

An important feature of our present work is the correlation of learning impairment with a severe reduction of hippocampal LTP and a blockage of LTP-induced gene expression in D1R−/− mice. The ventral tegmental area (VTA) provides the dopaminergic innervation to the hippocampus, which in turn projects to VTA through a polysynaptic pathway. This functional loop has been proposed to participate in long-term memory processes (Lisman and Grace 2005). Thus, it is possible that the cognitive deficit found in D1R−/− mice results from a deficit in dopaminergic neurotransmission in the hippocampal-VTA loop. In fact, we found several alterations in hippocampal synaptic plasticity in D1R−/− mice that might explain such a deficit. D1R−/− mice display a reduced level of potentiation in both E- and L-LTP and in the positive modulation of NMDAR-mediated current by D1Ra activation. Our results are in agreement with previous experiments carried out in hippocampal slices from another line of D1R−/− mice, which showed that D1Rs are involved in L-LTP maintenance (Matthies et al. 1997). Four hours after the tetanization protocol in D1R−/− slices, these authors observed a remnant

\begin{table}
\centering
\caption{Quantification of HFS-induced \textit{Zif268} and \textit{Arc} expression in hippocampal slices}
\begin{tabular}{|c|c|c|c|}
\hline
 & \textit{Zif268} & \textit{Arc} & \\
 & WT & D1R−/− & WT & D1R−/− \\
\hline
\textbf{Basal} & 163 ± 61 & 128 ± 39 & 372 ± 191 & 413 ± 28 \\
\textbf{HFS} & 3111 ± 250* & 179 ± 50 & 2226 ± 432* & 260 ± 89 \\
\textbf{WT} & SCH23390 & WT & SCH23390 & \\
\textbf{Basal} & 251 ± 94 & 337 ± 90 & 280 ± 92 & 160 ± 51 \\
\textbf{HFS} & 2000 ± 230* & 311 ± 71 & 3100 ± 338* & 250 ± 62 \\
\hline
\end{tabular}
\textbf{Note: } Immunostained cells were counted in hippocampal sections (Figs 7 and 8) obtained from 3 (Arc) and 4 (Zif268) hippocampal slices, each from a different animal and with 4-7 sections each slice for D1R−/− mice and its WT control mice, \(n = 3\) (Arc) or \(n = 4\) (Zif268). Counts for the D1/D5R blockage (SCH23390) experiment were obtained from 3 slices from 3 animals, 3 sections each, \(n = 3\) (Arc and Zif268), for statistical purposes. Numbers indicate immunostained nuclei per square millimeter (mean ± standard error of mean). * \(P < 0.001\) compared with D1R−/− or to SCH23390.
\end{table}
 activation potentiates NMDAR-mediated synaptic currents by a mechanism requiring PKA activation. This result is similar to that reported by others in striatal neurons (Flores-Hernandez et al. 2002) but different from the D1/D5R-mediated potentiation of NMDA currents observed in prefrontal neurons, which is independent of the classical PKA pathway (Chen et al. 2004).

Our work not only confirms the previous work of Matthies et al. (1997) but also extends it in very significant ways. 1) We found that SCH23390 does not further reduce L-LTP in D1R−/− mice, demonstrating that D2Rs do not participate in this form of synaptic plasticity. This result is surprising considering that, although rat hippocampal pyramidal neurons express both receptor subtypes, D4R is the predominant one (Bergson et al. 1995; Smith et al. 2005). The distinct subcellular distribution of these 2 receptors in hippocampal neurons supports our findings. D3Rs are mainly localized in the cell soma (Liu et al. 2000; Rivera et al. 2002; Smith et al. 2005) where they can interact with GABAergic receptors (Liu et al. 2000). By contrast, D2Rs are predominantly localized in dendritic spines (Huang et al. 1992; Bergson et al. 1995; Smith et al. 2005). NMDARs are also localized in dendrite spines of hippocampal neurons, as are the molecules for signal transduction and local protein synthesis that are crucial for induction of L-LTP. 2) More importantly, we show that absence of D2Rs also reduces the magnitude of E-LTP and its duration. Not much attention has been paid to the role of dopamine in hippocampal E-LTP (Huang and Kandel 1995), although some authors (Otmakhova and Lisman 1996), using a D1/D5R antagonist, have presented evidence indicating that these receptors positively modulate E-LTP induction. Our results are consistent with this view, demonstrating for the first time that D1R activation is also required for the full expression of E-LTP. Thus, we propose that D1R, but not D2R, are relevant for both forms of LTP. 3) In addition, we found that D1R

Possible Mechanisms of D1R-Induced Synaptic Facilitation

The mechanism by which D1R modulates different phases of LTP is not well understood. We suspect that D1R could augment E- and L-LTP by different mechanisms because E-LTP is rapidly developed and does not require protein synthesis, whereas L-LTP does. Nevertheless, cAMP synthesis promoted by D1R activation could underlie both of them: whereas D1R-induced potentiation of NMDA currents might well facilitate the primary steps involved in the induction mechanisms of E-LTP, a stronger activation of D1R in L-LTP could allow a cross talk between different kinases converging in the mitogen activated protein kinase/extracellular signal-regulated kinase signaling pathway to trigger the required macromolecular synthesis at tagged synapses (Kelleher et al. 2004).

It is also possible that the D1R participates in LTP via functional protein-protein interactions with glutamate receptors. D1R can physically interact with NR1 or NR2A subunits of NMDARs and modulate NMDAR activity (Lee et al. 2002; Pei et al. 2004). The coactivation of these 2 receptors stimulates protein synthesis, upregulates GluR1 receptor subunit, and
increases surface expression of GluR1 subunit of AMPA receptors at synaptic sites (Smith et al. 2005). The trafficking of GluR1 subunits to the appropriate synapses has been implicated in associative learning and L-TPT induction (Passafaro et al. 2001; Rumpel et al. 2005). Thus, increased expression and specific trafficking of GluR1 could very well be the mechanism by which D1R activation augments L-TPT.

Hippocampal-Dependent Learning Is Impaired in D1R^{−/−} Mice

Because spatial learning and memory storage induce hippocampal LTP (Pastalkova et al. 2006; Whitlock et al. 2006) and due to the drastic reduction of LTP in our D1R^{−/−} mice, we expected to find an impairment in spatial learning. Indeed, we found that D1R^{−/−} mice do reduce escape latency in the water maze between the 1st and the 3rd day but are unable to further reduce it over 3 additional days of training, as have been shown previously (Smith et al. 1998; El-Ghundi et al. 1999). This suggests that the knockout mice understand the task but are unable to acquire a navigation strategy to further reduce escape latency. This inability could not be attributed to poor swimming skill because swimming speed was similar in WT and KO mice, and KO mice are more active than WT. Impairment could also be due to lack of motivation to escape the water because the dopamine system is very important for motivated behavior. However, D1R^{−/−} and WT mice have similar escape latencies in the cued trial, demonstrating that D1R^{−/−} mice have no deficit in visual acuity, locomotion, or motivation to escape the water. These results strongly suggest that D1R inactivation produces a specific impairment in spatial learning and memory.

D1Rs Are Required for HFS-Induced Expression of Zif268 and Arc

The striking induction of Zif268 and Arc that occurs in CA1 pyramidal cells in the hippocampus after HFS trains is completely absent in D1R^{−/−} animals. This inhibition correlates with the deficit in LTP and the loss of spatial learning and memory consolidation in these mutant mice, strongly suggesting that they are all caused by the lack of D1Rs. Our results are consistent with previous data showing that disruption of zif268 or arc expression blocks long-term memory and L-TPT (Davis et al. 2000; Guzowski et al. 2000; Jones et al. 2001). In addition, the lack of Zif268 and Arc expression after HFS in D1R^{−/−} indicates that the signaling mechanisms linking synaptic activation in the dendrites with nuclear gene expression are recruited upon D1R activation. The fact that pharmacological blockade of D1R inhibits the LTP-induced gene expression as happens with the genetic inactivation of D1R in the knockout mice strongly indicates that D1Rs are critical for the proteins synthesis required for the transition from E-LTP to L-TPT and that this effect is not due to any compensatory mechanisms during D1R^{−/−} mice development. The expression of Arc after HFS in WT is particularly notable because newly synthesized arc mRNA is selectively targeted to activated synapses by an NMDAR-dependent process (Steward et al. 1998; Rodriguez et al. 2005). Thus, both NMDAR and D1R are required for the activity-dependent induction and synaptic targeting of arc, suggesting that arc is part of the mechanism that integrates signals from these 2 receptors to produce changes in synaptic efficacy. Finally, although genetic inactivation of D1Rs markedly reduces E- and L-TPT, both phases of LTP are still present to some degree in D1R^{−/−} animals. Our studies suggest that this residual LTP is not sufficient to induce Zif268 or Arc expression or to support spatial learning in the Morris water maze, suggesting that the modulatory action of D1R is critical for the presumed behavioral consequences of LTP.

The data presented here provide strong evidence that D1Rs are critical for the induction of translational events at selected synapses underlying L-TPT and memory consolidation. In the ongoing debate about how LTP mechanisms are involved in learning and memory formation, our findings provide important evidence suggesting that L-TPT, spatial memory formation, and activity-dependent gene expression share molecular mechanisms triggered by D1R activation.

Notes

Funded by the Spanish Ministerio de Ciencia y Tecnologı´a, SAF2003-4864, GEN2003-C06-02/NAC, Fondo de Investigación Sanitaria FIS 03/1004, RTA G05/05, and PNSD (RM); Ministerio de Sanidad y Consumo, PI05/1194 (MJS) and PI041226 and Fundación “La Caixa” (VC); Físico-HRGC, I2003-315 (LMS); Gobierno Vasco (OO); and FPI (NG) and Programa Ramón y Cajal del Ministerio de Educación y Ciencia (EDM).

Centro de Investigación Biomédica en Red de enfermedades Neurológicas, Instituto de Salud Carlos III, Madrid, Spain (RM, VC, EDM). *Conflict of Interest* None declared.

Funding to pay the Open Access publication charges for this article was provided by Ministerio de Ciencia y Tecnología, SAF2003-4864, GEN2003-C06-02/NAC.

Address correspondence to Rosario Moratalla, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avda Dr Arce 37, 28002 Madrid, Spain. Email: moratalla@cajal.csic.es.

References

10 D1 Receptors Are Critical for LTP, Gene Expression, and Memory · Granado et al.

Whishaw IQ, Dunnett SB. 1985. Dopamine depletion, stimulation or blockade in the rat disrupts spatial navigation and locomotion dependent upon beacon or distal cues. Behav Brain Res. 18:11-29.

