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Primary visual cortex contains multiple maps of features of the
visual scene, including visual field position, orientation, direction,
ocular dominance and spatial frequency. The complex relationships
between these maps provide clues to the strategies the cortex uses
for representing and processing information. Here we simulate the
combined development of all these map systems using a computa-
tional model, the elastic net. We show that this model robustly
produces combined maps of these four variables that bear a close
resemblance to experimental maps. In addition we show that the
experimentally observed effects of monocular deprivation and
single-orientation rearing can be reproduced in this model, and
we make some testable predictions. These results provide strong
support for the hypothesis that cortical representations attempt to
optimize a trade-off between coverage and continuity.
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Introduction

The receptive fields of neurons in the primary visual cortex of

cats, monkeys and ferrets are selective for several different

features of the visual input. These include visual field

position (VF), ocular dominance (OD), orientation (OR), direc-

tion of motion (DR) and spatial frequency (SF) (Hubel and

Wiesel, 1977; Bonhoeffer and Grinvald, 1991; Shmuel and

Grinvald, 1996; Weliky et al., 1996; Shoham et al., 1997; Hübener

et al., 1997; Kim et al., 1999). The preferred stimulus for each

variable tends to change smoothly as one moves across the

surface of the cortex, with occasional discontinuities. This can

be thought of as a ‘dimension-reducing mapping’, whereby

a space of features containing multiple dimensions (VF, OD, OR,

DR, SF, etc.) is compressed onto an essentially two-dimensional

sheet of neurons. The result is a set of coexisting maps of visual

features with a rich set of geometrical relationships. For

instance, OR pinwheels tend to lie in the center of OD columns,

and maps tend to intersect at right angles (Bartfeld and Grinvald,

1992; Obermayer and Blasdel, 1993; Hübener et al., 1997; Kim

et al., 1999). It is generally believed that the source of these

relationships is the mechanisms by which visual cortical maps

are generated during development (e.g. Wolf and Geisel, 1998).

Thus, the structure of these maps provides an important

constraint on theories for how maps form.

Several computational models have made important contri-

butions with regard to understanding the structure of OD and

OR maps (reviewed in Erwin et al., 1995; Swindale, 1996;

Carreira-Perpiñán and Goodhill, 2002). In particular, ‘low di-

mensional’ or ‘feature space’ models (Durbin and Mitchison,

1990; Goodhill and Willshaw, 1990; Obermayer et al., 1992;

Goodhill et al., 1997; Swindale and Bauer, 1998; Goodhill and

Cimponeriu, 2000; Carreira-Perpiñán and Goodhill, 2004),

generate maps that closely reproduce the structure of OR and

OD maps (Erwin et al., 1995; Swindale, 1996). However, the

application of these models has been limited up to now to only

one or two features (OD and/or OR) in addition to VF. This

naturally raises three questions: (i) can such models still

successfully reproduce map structure when multiple features

are considered; (ii) what quantitative predictions do these

models make in this case; and (iii) what light does the behavior

of models in this case shed on the biological mechanisms

underlying map formation. In this paper we address these

questions by simulating the combined development of VF, OD,

OR, DR and SF using the elastic net model (Durbin and

Willshaw, 1987). This is a feature space model which works

by minimizing an objective function that explicitly trades off

coverage versus continuity constraints (Swindale, 1996). In

addition, we show that in this multiple map case the elastic net

can also reproduce recent experimental results regarding

monocular deprivation (Crair et al., 1997) and single orientation

rearing (Sengpiel et al., 1999). Taken together, our results

extend the range of phenomena to which computational

modeling of map formation in visual cortex has been applied.

Most importantly, they provide strong additional support for the

hypothesis that the computational principles underlying algo-

rithms such as the elastic net capture the essential biological

principles underlying map formation in the real cortex.

Materials and Methods

The Elastic Net Algorithm
The elastic net (Durbin and Willshaw, 1987; Durbin and Mitchison,

1990; Carreira-Perpiñán and Goodhill, 2002) produces maps that

minimize a tradeoff E = aC + (b/2)R between coverage C of the stimu-

lus space and continuity R of the cortical representation. The coverage

term is defined as follows:

Cðy1; . . . ; yM ;K Þ = –K +
N

n = 1

log +
M

m = 1

e
– 1
2kðxn – ym Þ=K k2 ð1Þ

where xn represents a stimulus space vector, ym an elastic net centroid

(stimulus preference of neuron m), and K a receptive field size (k�k
represents the Euclidean norm, or length, of a vector). Note we use the

term ‘receptive field’ to refer to all features jointly (VF, OD, OR, DR, SF),

and not only to the visual field. The continuity term was originally

defined as

Rðy1; . . . ; yM Þ = +
m

kym+1 – ymk
2 ð2Þ

and that is the definition used here. In Carreira-Perpiñán and Goodhill

(2004) we consider the effect on OR and OD maps of generalized

continuity terms, and show that definitions other than (2) result in

specific distortions of the geometric relationships of the maps (see also

M.A. Carreira-Perpiñán and G.J. Goodhill, submitted for publication).

The positive ratio a/b controls the relative strength of the continuity
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versus the coverage terms. Biologically plausible maps arise for a range

of values of a/b. The net consists of a square lattice with M centroids,

representing a square array of cortical neurons (the depth dimension of

the cortex is not modeled).

The Stimulus Space
The stimulus space consists of feature points evenly spaced along

orthogonal feature dimensions. For visual field (VFx, VFy) the stimulus

values (training set) are a grid of Nx 3 Ny points in the rectangle [0, 1] 3

[0, 1]. Orientation preference and selectivity (OR, ORr) are represented

by adding dimensions of NOR 3 1 points in [(–p/2), (p/2)] 3 frORg,
where OR is conventionally represented by two variables in polar

coordinates, with NOR values uniformly arranged on a ring of radius rOR.

Direction preference and selectivity (DR, DRr) are represented by

adding a dimension of points fOR – (p/2),OR + (p/2)g on a ring of radius

rDR, as in Swindale and Bauer (1998). The ocular dominance (OD)

dimension has NOD values in [–lOD, lOD]. Spatial frequency (SF) is

represented by NSF values in [–lSF, lSF]. Consistent with several

experimental reports we take NSF = 2, representing ‘high’ and ‘low’

frequencies (Hübener et al., 1997; Shoham et al., 1997; Kim et al., 1999).

[It should be noted that others have suggested the representation of SF

may be more continuous (Silverman et al., 1989; Everson et al., 1998;

Issa et al., 2000)].

Training Regime
We trained nets with the following configuration. Training set: Nx = Ny =
20, NOR = 6, NDR = 2, NOD = 2, NSF = 2 (a total of 19 200 training points);

lOD = 0.06 (lOD = 0.08 for strabismus), lSF = 0.06, rOR = 0.08, and rDR =
0.08. Elastic net: M = 128 3 128 = 16 384 centroids; a = 1, b = 10;

nonperiodic boundary conditions. The net was started from a random

initial starting configuration with some global topographic bias; where

results have been averaged over multiple simulations this corresponds

to taking different random initial starting configurations for the net. As is

common in the elastic net, the minimization of the energy is interleaved

with decreasing (annealing) K . We annealed K from a starting point of

0.2 with a rate of 0.9925 to the point at which the maps have just arisen

(K � 0.03). An efficient minimization method based on Cholesky

factorization was used (Carreira-Perpiñán and Goodhill, 2004). The

simulations were performed using custom software written in Matlab.

Monocular Deprivation and Single--orientation Rearing
For the default case (no deprivation) the coverage term a was 1 for all

stimulus points xn. However, in order to implement deprivation of some

stimulus (e.g. OD), a was redefined as a vector with N components,

where the value of the component an represents the relative strength

with which the stimulus point xn is represented in the input. Thus, for

monocular deprivation we took an = depOD 2 (0, 1) for each xn

matching the deprived eye. In order to implement enhancement of OR

for single orientation rearing, we took an = depOR > 1 for each xn

matching the enhanced angle of OR. In order to capture the experi-

mental observation that SF maps consist of patches of low frequency in

a broader expanse of high frequency (Shoham et al., 1997), one value of

SF was ‘deprived’ with depSF = 0.5 for all simulations.

Column Width
The power of the discrete Fourier transform of the angle maps was

roughly isotropic and concentrated around a ring. We summarized it

by the mean wavelength (mean column width), averaged over all

directions.

Crossing Angles
We disregarded the points lying 5 pixels or less from the boundaries of

the net (a thin inner stripe framing the maps in e.g. Fig. 1) to eliminate

border effects. At each pixel, we computed the angle between the

gradient vectors of pairs of dimensions (see below) and mapped it to

[0�, 90�], thus obtaining the angle between contours for the dimensions.

Each such angle counted with a weight proportional to the product of

the gradient moduli of the dimensions, e.g. k=ORk 3 k=ODk for OR and

OD, so that pixels lying in areas of either constant OR or constant OD

(i.e. away from borders of OR or contours of OD) were effectively

removed from the histogram. This is because, in an area where either

map is nearly constant, the gradient vector is negligible in modulus and

its direction basically arbitrary; unlike along borders, where the gradient

vector is large and its direction well defined. We refer to the graphs we

plot as histograms, even though in a strict sense they are not.

Pinwheel Distributions
AnOR singularity, or pinwheel, is defined positive if the orientation angle

increases in a clockwise direction around the pinwheel and negative if

anticlockwise. Pinwheels were automatically located in the OR maps as

follows. First, the winding number of each pixel in the OR map was

estimated by summing the increments of OR angle (in [(–p/2), (p/2)])
along a closed path (a square of radius 1 pixel centered in the pixel

considered) in a clockwise direction and dividing the result by 2p; this
results in 0 for non-pinwheel points and +1/2 (–1/2) for pixels at or

adjacent to a positive (negative) pinwheel, respectively. The exact

pinwheel locationwas obtained by grouping clusters of nonzerowinding

number and computing their centers of mass. To quantify the layout of

pinwheels with respect to OD or SF columns, we computed, for every

pinwheel, the distribution of distances of a given pinwheel to its closest

OD or SF border. We prefer this to calculating distances to OD centers

since the ‘center of an OD/SF column’ is generally not well defined,

except for columns which are translations of each other, and becomes

difficult to use with columns of changing width, forks, islands or other

complex shapes. In contrast, the OD/SF borders are well defined in all

these cases. To compute thedistances between apinwheel and its closest

OD or SF border, we represented the OD/SF borders by a finely spaced

collection of points (the contours generated by Matlab for the OD/SF

map); the said distance was then given by the point in this collection

closest to the given pinwheel. We considered that a pinwheel lay on an

OD/SF border if the distance between the two was 1 pixel or less.

Results

Multiple Maps

In a feature space model such as the elastic net, feature

dimensions are represented as spatial dimensions in a Euclidean

space. Thus there are, for instance, two dimensions for VF, and

one for OD. Since OR is periodic it is usually represented by

a ring in two dimensions, making five dimensions. To this we

added two dimensions representing DR (also periodic), and one

representing SF, making eight dimensions in total. The precise

distribution of feature points in each of these dimensions is

described in Materials and Methods.

Figure 1 shows an initial simulation of VF and OR, and the

effect of adding dimensions representing DR, OD and SF

respectively in subsequent simulations. The top row corres-

ponds to OR simulated just with VF, with subsequent rows

showing the addition of DR, OD and SF respectively. It is

apparent that adding dimensions does not change the qualita-

tive character of maps, but does tend to reduce their wave-

lengths in the model (quantified in Fig. 2). Looking at the last

row of Figure 1, it is apparent that the general structure of all

four of the OR, DR, OD and SF maps have a good correspond-

ence, at least qualitatively, with experimental data (Shmuel and

Grinvald, 1996; Weliky et al., 1996; Shoham et al., 1997;

Hübener et al., 1997; Kim et al., 1999). (Simulations started

with different random seeds gave maps with similar global

characteristics.) Also in Figure 1 is inset a joint contour map for

all four columnar systems, to show the extent to which they

intersect at right angles, and the relation of OR pinwheels to OD

and SF columns (these properties are quantitatively analyzed in

Fig. 3). OR, OD and SF all show strong orthogonality to each

other, as observed experimentally (Hübener et al., 1997).

Figure 2A--C looks at some specific relationships between the

DR and OR maps, and between OR and SF, when all maps are

simulated together. It can be seen that the DR map has fractures

(lines of low DR modulus, which correlate with where DR angle
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reverses direction), and that these fractures connect OR

pinwheels (Shmuel and Grinvald, 1996; Swindale and Bauer,

1998). Away from DR fractures, contours of OR and DR run

parallel. DR fractures, on the other hand, run orthogonal to

contours of OR, since they connect pinwheels. The OR and SF

maps tend to intersect orthogonally (Hübener et al., 1997).

Figure 2D shows the mean wavelength for each dimension as

the number of dimensions is increased. It is apparent that

adding dimensions reduces the mean wavelength for all pre-

vious maps. This effect is less pronounced if the map added has

strong ‘deprivation’, as seen with decreased gradient for

addition of SF (depSF = 0.5 in this case; with depSF = 0.3 there

is no wavelength reduction).

Figure 3 shows a quantitative analysis of the effect of adding

feature dimensions on the distribution of interpinwheel dis-

tances, distances of pinwheels to OD and SF borders, and

intersection angles between columns. As in Figure 1 successive

rows show the cases of OR simulated alone (i.e. with VF but

without DR, OD and SF); OR and DR together; OR, DR and OD;

and finally all four feature dimensions (OR, DR, OD, SF). The first

column shows histograms of distance between pairs of pin-

wheels that are nearest neighbors. As in the experimental data

Figure 1. The effect of adding additional feature dimensions to the elastic net. The large inset shows contours for all dimensions: OR (blue), DR (red), OD (black) and SF (green).
The four rows show OR simulated alone, OR/DR, OR/DR/OD and OR/DR/OD/SF respectively. The same parameters were used in each case.
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(Müller et al., 2000), singularities repel each other compared to

a random distribution, though the repulsion weakens as more

maps are added. For OR/VF simulated alone, the percentage of

nearest-neighbor pinwheels that are of the same sign is 18.7 ±
1.3%, which matches well with experimentally determined

values of 19.7 ± 1.5% (ferret) and 21.4 ± 2.0% (cat) (Müller

et al., 2000). However, in the simulations this rises to 30.9 ±
1.1% when all features are simulated.

The second column of Figure 3 shows histograms of OR

pinwheel distance to OD border and SF border (the OD case is

shown for the simulations with and without SF). Distances are

normalized by mean wavelength of the OD/SF map respectively,

so that a normalized distance of 0.25 roughly corresponds to the

‘center’ of the OD/SF columns (we prefer to use distance of

pinwheels to column borders rather than column ‘centers’ since

borders have a less ambiguous definition than ‘centers’; see

Materials and Methods). Pinwheels tend to lie away from the

borders of OD and SF, and the histogram of pinwheel to border

distance reliably has a strong peak at slightly less than 0.2 of

mean wavelength. Adding SF reduces this distance slightly

for OD, i.e. moves OR pinwheels slightly closer to OD borders.

It is hard to make a precise quantitative comparison with

experimental data due to ambiguities in the definition of

‘distance to column center’, but at least qualitatively there is

a good match (Bartfeld and Grinvald, 1992; Obermayer and

Blasdel, 1993; Hübener et al., 1997).

The third column of Figure 3 shows intersection angles for

map pairs. This shows the tendency to orthogonality for all

combinations except OR and DR, where the intersection angles

are low. It is clear that the shape of the intersection angles

histogram for each pair of maps is very robust to the presence of

additional feature dimensions. In order to make a direct

comparison with numerical values quoted experimentally,

Table 1 shows mean intersection angles (scalar average) for

the simulations. It can be seen that adding features causes maps

to intersect at very slightly shallower mean angles. The mean

angle for OD/OR reported by Hübener et al. (1997) was 51.7 ±
0.8�, which appears statistically indistinguishable from our value

of 52.5 ± 0.2� when all maps are simulated together. Our value

for SF/OR is 52.0 ± 0.2�; that found by Hübener et al. (1997) was

49.7 ± 0.8�, which they did not report as significantly different

from their OD/OR value. It should be noted though that such

means are only a very crude way of characterizing these angle

distributions, and that 90� is the modal angle of intersection.

Another characteristic of visual cortical maps is the rate of

change of features with respect to other features, particularly

the relation between VF and OR. That is, what is the change in

the VF preference versus OR preference between neighboring

cortical locations? Figure 4 shows this relationship, and those

for VF/OD and OR/OD, as maps are added. In general few

consistent relationships are apparent. A specific change in OR

can be associated with any change in VF. Large changes in VF

Figure 2. Relationships between maps when OR, DR, OD, SF are simulated together. (A) OR contours (blue) plotted with DR modulus (grayscale). (B) DR contours (red) plotted
with OR modulus (grayscale). (C) OR (blue) with SF (green) contours. D. Mean wavelength change as dimensions are added.
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tend to be associated with small changes in OR when OR and VF

are simulated alone, but this trend weakens considerably when

DR and SF are added. These results fit better with recent reports

of a lack of consistent relationship between VF and OR

gradients (Hetherington and Swindale, 1999; White et al.,

2001; Bosking et al., 2002; Buzás et al., 2003) than with the

finding of Das and Gilbert (1997) of a strong positive correl-

ation. Although early results with the elastic net (Durbin and

Mitchison, 1990) were interpreted as implying a strong negative

correlation (Das and Gilbert, 1997) this had not actually been

quantified until now, and our results show a rather more subtle

picture.

Figure 3. Quantitative effects of adding additional feature dimensions. Successive rows show the addition of dimensions as in Figure 1. Column 1: distribution of pinwheel-to-
closest-pinwheel distances; distances are normalized by OR wavelength (‘control’ means randomly distributed pinwheels). Column 2: distribution of pinwheel-to-border distances
for OD and SF; distances are normalized by OD or SF wavelength. The vertical red line shows the pinwheel-border distance of a pinwheel at the center of a patch of mean
wavelength. Column 3: intersection angles between all dimensions. The histograms cluster into two groups: almost uniform with bias towards parallelism (OR/DR) and bias toward
orthogonality (the rest of the histograms) with almost no change as dimensions are added. All plots show mean results across several simulations; errorbars show standard error of
mean (n5 11). Note that for the histograms of distances of OR pinwheels to OD and SF borders it is possible for a distance to exceed 0.25 of the mean wavelength in areas where
columns are unusually wide relative to elsewhere in the map. The histogram for spatial frequency has a particularly thick tail because SF patches are of quite variable size.
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D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/15/8/1222/304693 by guest on 18 April 2024



Strabismus

Strabismus has previously been modeled in the elastic net by

increasing the spacing of points along the OD dimension

(Goodhill and Löwel, 1995). However, the effect on OR, DR

ad SF maps of strabismus in the model was not investigated. We

therefore repeated the simulations described above for the

strabismic case (see Materials and Methods). Although as

previously reported, OD columns become wider (Goodhill

and Löwel, 1995), no significant differences were found in the

interrelationships between maps reported above for the non-

strabismic case (data not shown). This is consistent with the

Table 1
Mean crossing angles between the maps of OD, OR, DR and SF for the model, and values

reported by Hübener et al. (1997) for the cat

Model of
OR þ DR

Model of
OD þ DR þ OD

Model of
OR þ DR þ OD þ SF

Experimental
results of Hübener
et al. (1997)

OR/DR 19.7 ± 0.2 16.9 ± 0.2 15.6 ± 0.1
OD/OR 54.6 ± 0.2 52.5 ± 0.2 51.7 ± 0.8
OD/DR 56.7 ± 0.2 54.1 ± 0.2
OD/SF 47.2 ± 0.3
SF/OR 52.0 ± 0.2 49.7 ± 0.8
SF/DR 52.6 ± 0.1

Figure 4. Rates of change of pairs of stimulus features in the simulated maps, shown as scatterplots of the gradient moduli of visual field (VF), OD and OR. The number of points in
each plot is 128 3 128 5 16 384, the number M of points in the net. Pinwheels are marked by circles (positive) and squares (negative).
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experimental finding that strabismus does not greatly alter the

relationships between OR and OD maps (Löwel et al., 1998).

Monocular Deprivation and Single-orientation Rearing

In addition to the normal development simulated above, we

were also interested to examine abnormal development in

response to visual deprivation. In particular we focused on the

experimentally well-characterized phenomenon of monocular

deprivation (MD) (reviewed in Hubel and Wiesel, 1977;

Katz and Shatz, 1996), and the more recently discovered

phenomenon that single-orientation rearing (SOR) leads to an

over-representation of that orientation in the OR map (Sengpiel

et al., 1999). In each case, deprivation was modeled by changing

the strength of the coverage term in the elastic net energy

function relative to the continuity term (see Materials and

Methods). In effect, we decreased the influence of feature

points representing inputs in the deprived eye for the cortex

relative to the open eye for MD, and increased the influence of

feature points representing the ‘single’ orientation for the

cortex relative to other orientations for SOR.

Goodhill and Willshaw (1994) modeled MD in the elastic net

using the same method of reduced influence for a feature space

consisting only of VF and OD. However, they examined only

constant MD existing throughout development. Figure 5 shows

amore complete analysis of the effect of MDwith varying-length

time windows and start times for the deprivation (here OR was

simulated in addition to OD — for analysis of the relationship

between OR and OD see Fig. 6). It can be seen that, analogously

to experimental data (reviewed in Hubel and Wiesel, 1977; Katz

and Shatz, 1996), OD deprivation has significant effects only in

Figure 5. Simulation results for ocular dominance deprivation for a value depOD 5 0.4 of the deprivation strength occurring only inside a window during OD development. The rows
correspond to the duration kw of the OD deprivation window, while the columns correspond to the center k0 of that window. Both axes are in units of k, the annealing parameter of
the elastic net. This is 0.2 at the start of each simulation, and is gradually reduced (see Materials and Methods), so that decreasing k means increasing developmental time. The top
row thus corresponds to the longest duration of deprivation. For the columns, the earliest window (k0 5 0.0525) lies entirely before the OD map starts to develop in the simulations.
The latest window (k0 5 0.0100) lies after the OD map has fully developed. The four intermediate values lie uniformly in this development period. The figure shows that in the elastic
net, OD deprivation has a strong effect only in a critical period that starts when the OD map starts to arise (in this simulation, at k 5 0.045) and ends when the OD map is fully
developed (at k 5 0.033). For clarity all simulations use the same starting conditions.
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a ‘critical period’ located shortly after the moment the OD map

starts to arise but before it is fully developed, with OD

deprivation either before or after having little effect.

Figures 6 and 7 examine the effect of MD on the structure of

OR, DR and SF maps. Although the immediate qualitative

impression is that MD has little effect on the structure of other

maps, there are subtle changes. Perhaps the most noticeable

effect is seen in the map of OR + OD contours: the islands of

cortex still dominated by the deprived eye tend to colocalize

with pinwheels (Fig. 7B), as seen experimentally (Crair et al.,

1997). Besides, column widths for the OR, DR and SF maps

increase slightly as the deprivation ratio increases (Fig. 7C). This

can be explained as follows in the coverage-continuity frame-

work (see Materials and Methods). We know that increasing the

Figure 6. The effect of monocular deprivation on map structure for all dimensions (same starting conditions in each case). depOD is the ratio of the overall level of activity over the
course of development (modeled by the elastic net parameter a) in the deprived eye relative to that in the normal eye (left-most column is control: no deprivation). The fifth row
shows contours of OD (black) and OR (blue): note the tendency for the islands of cortex still dominated by the deprived eye to contain pinwheels (Crair et al., 1997).
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value of the ratio b/a (within a range for which striped maps

arise) increases the width of the columns for all maps (Carreira-

Perpiñán and Goodhill, 2004). In MD, we decrease the value of a
(more precisely, the value of an for the deprived eye stimuli) in

equation (1), which has the effect of increasing b/a and so

increasing the width of the columns for all maps. We also found

a broadening of the histogram of distances from pinwheels to

OD and SF borders for the largest deprivation ratio, as shown in

Figure 7E,F. For increasing deprivation, pinwheels move even

closer to the center of ocular dominance columns, and the peak

becomes wider, indicating a larger dispersion. This is because

when the deprivation is high, the deprived-eye OD domains

shrink and the distance to pinwheels inside them decreases; but

the normal-eye domains expand and the distance to pinwheels

inside them increases.

Figure 8 shows a related influence for the structure of visual

input on OR map structure via single orientation rearing

(Sengpiel et al., 1999). As observed biologically, the greater

the ‘over-representation’ of one orientation in the input, the

greater the area of cortex that is dominated by that orientation

in the final map. The OD, DR and SF maps are not shown: as for

MD, they were largely unaffected.

Discussion

Computational theories of visual map development have been

proposed at several levels of abstraction.While those towards the

more realistic end of the spectrum, such as ‘high-dimensional’

models (e.g. Miller et al., 1989; Goodhill, 1993), are easier to

interpret biologically, they have not been very successful at

Figure 7. Quantitative effects of monocular deprivation in the simulated maps. (A) Change in proportion of cortical area covered by the deprived eye as amount of deprivation
varies. Error bars are present but very small. (B) Quantitative demonstration that pinwheels tend to colocalize with deprived eye patches. The ‘pinwheel--OD colocalization ratio’ is
the ratio of (number of pinwheels lying in deprived eye patches/total number of pinwheels) to (area of deprived eye patches/total area). This is greater than one when there is
a colocalization effect. (C) Change in wavelengths of OR, DR and SF as MD varies. OD wavelength is not plotted. The size of left- and right-eye patches becomes quite uneven with
increasing deprivation, and in this case the OD map is not well-described by the mean wavelength. (D) Intersection angles between OD and OR for differing MD. (E) Distribution of
OR pinwheel distances from OD borders, for different values of MD. (F) Distribution of OR pinwheel distances from SF borders, for different values of MD. All plots show mean results
across eight simulations; error bars show standard error of mean.
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reproducing the geometrical relationships described above.

More successful in this regard have been self-organizing ‘feature

space’ algorithms such as the elastic net and Kohonen algo-

rithm, which were first applied to the development of visual

cortical maps ~15 years ago (Durbin and Mitchison, 1990;

Goodhill and Willshaw, 1990; Obermayer et al., 1990, 1992).

These early applications considered only the development of

one columnar system, either OR or OD, in addition to VF.

Subsequently the joint development of two columnar systems in

addition to VF was considered (OR and OD: Erwin et al., 1995;

Wolf and Geisel, 1998; Goodhill and Cimponeriu, 2000; OR and

DR: Swindale and Bauer, 1998), and several detailed properties

of biological maps were reproduced in these studies. Here we

have presented the first application of such an algorithm to the

joint development of four columnar systems in addition to VF. It

was not obvious a priori that such algorithms would still

produce biologically relevant results in such a relatively high-

dimensional space. However, we have shown that the elastic net

can do a remarkably good job of reproducing a wide range of

experimentally observed phenomena in this case. We have also

shown that it can reproduce recently observed phenomena

concerning MD and SOR. The main experimental facts the

model reproduces even when multiple maps are simulated

together are now summarized.

1. Orientation and ocular dominance: The model reprodu-

ces the tendency of OR and OD columns to intersect at

steep angles (Obermayer and Blasdel, 1993), and for

pinwheels to lie far from OD borders (Bartfeld and Grinvald,

1992; Obermayer and Blasdel, 1993; Hübener et al., 1997).

2. Direction: In the model the DR map has fractures rather

than pinwheels and pinwheels tend to be connected by

fractures (Shmuel and Grinvald, 1996; Weliky et al., 1996).

3. Spatial frequency: The model reproduces the tendency of

OR and OD columns to intersect SF columns at steep angles,

and of OR pinwheels to lie far from SF borders (Hübener

et al., 1997).

4. Monocular deprivation: MD during a critical period of

development produces a shrinkage of OD domains from the

deprived eye, with a magnitude proportional to the strength

and duration of the deprivation. Pinwheels tend to colocal-

ize with deprived eye patches (Crair et al., 1997).

5. Single orientation rearing: SOR produces an expansion of

OR domains for the overrepresented orientation (Sengpiel

et al., 1999).

While it was already known that some of these map properties

could be produced by feature-space models (Erwin et al., 1995;

Swindale, 1996; Swindale and Bauer, 1998), we have shown that

these results are robust to the addition of extra feature

dimensions. Further, we have shown that the relationships

between maps produced by the model are generally robust to

perturbations in input activity during development including

strabismus, MD and SOR. In particular, the model predicts that

these perturbations have little effect on the structure of SF and

DR maps. This could relatively straightforwardly be tested by

Figure 8. The effect of single orientation rearing on OR map development, i.e. over-representation of one orientation in the input relative to the others (Sengpiel et al., 1999). depOR

here refers to the value of a for the zero degrees orientation (cyan) compared to other orientations over the course of the simulation. Thus, depOR 5 1 means all OR angles are
equally represented in the training stimuli, while depOR[1 means that 0� occurs more often than other angles. The histogram in B shows the proportion of cortical area dedicated
to each orientation preference for different degrees of OR over-representation. Four histograms are shown, corresponding to the values of depOR 5 1, 1.5, 2 and 2.5. The histograms
show that depOR 5 1 (no over-representation) leads to a uniform histogram while increasing SOR increases the cortical area dedicated to zero degrees at the expense of the other
OR values, in agreement with biological data. Each histogram is the result of one simulation, with little variation over different simulations (error bars are not shown to avoid
cluttering the figure).
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imaging all four of the maps OR, DR, OD and SF after each of

these perturbations. The model also predicts a slight increase in

the wavelengths of the maps of OR, DR and SF after MD. From

the coverage-continuity point of view, this results from the fact

that the monocular deprivation effectively increases the in-

fluence of the continuity term.

The adult arrangement of maps in visual cortex has also been

analyzed from a wiring optimization perspective (Koulakov and

Chklovskii, 2001, 2002; Chklovskii and Koulakov, 2004). Al-

though this approach does not address the development of

maps, and also has not so far included topography as a variable to

be mapped, it can successfully reproduce some of the experi-

mental findings we have addressed here with the elastic net. In

fact recent work has shown both a formal link between wiring

optimization, Mexican-hat lateral interactions and the elastic

net continuity term (Carreira-Perpiñán and Goodhill, 2004), and

that subtle differences in patterns of intracortical connectivity

can have a strong influence on the relationships between

individual maps.

The only other study to have examined the development of

multiple columnar systems in visual cortex using a feature space

model is that of Swindale (2000). Here the development of up to

nine feature dimensions in addition to VF was simulated using

Kohonen’s algorithm. However, the approach was more ab-

stract than ours in that all feature dimensions were binary, and

were not interpreted in terms of specific visual features.

Swindale found that the structure of each map individually,

including its wavelength, was fairly robust to additional maps,

but that the relationships between maps (specifically intersec-

tion angles) changed in a gradual way as more maps were added.

These results differ somewhat from our own results: we found

wavelengths to decrease as maps are added, yet more robust-

ness of intersection angles as maps are added. We did, however,

find a shift in the location of pinwheels relative to OD columns

with the addition of the SF dimension [as no periodic dimen-

sions were simulated in Swindale (2000) the question of the

location of pinwheels relative to other maps did not arise in that

case]. The reason for the difference in results between these

two studies is unclear, but it could be a manifestation of the fact

that, although the elastic net and Kohonen algorithms are

similar in flavor, they can behave differently in fine details.

What light do our results shed on the biological mechanisms

underlying map formation? The elastic net represents a particu-

lar mathematical instantiation of the hypothesis that visual

cortical maps are the result of an optimization process. In

particular, the elastic net attempts to jointly optimize both

coverage, the degree to which all input features are uniformly

represented, and continuity, the degree to which the spatial

representation of features is ‘smooth’ in some sense (see

Materials and Methods and Carreira-Perpiñán and Goodhill,

2002). It was already known that such optimization hypotheses

are sufficient to generate the detailed structure of OR and OD

maps under normal conditions (Erwin et al., 1995; Swindale,

1996). Our results now show that optimization principles based

on the coverage--continuity trade-off are also sufficient to

reproduce a large array of additional data, both when additional

maps are considered, and when particular types of visual

deprivation are introduced.

How might the visual cortex actually implement such

optimization principles? One way the elastic net equations

can be interpreted biologically is in terms of a Hebbian process:

the simple gradient descent learning rule for optimizing the

elastic net objective function is equivalent to an activity-

dependent strengthening of connections between the input

feature that is presented at each instant and the neurons that

respond most strongly to that feature. In contrast, evidence is

now mounting that at least some properties of visual map

formation are activity-independent (e.g. Katz and Crowley,

2002). However, the elastic net equations can be interpreted

in other ways, and in fact the algorithm originally grew out of an

activity-independent model that relied on the matching of

molecular cues (Willshaw and von der Malsburg, 1979). The

fact that such optimization models work so well, and are now

the only developmental models available for reproducing the

wide array of map properties addressed in this paper, suggest

that the optimization hypothesis is key to understanding visual

cortex, independent of details of how precisely it might be

implemented.
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