
Optical imaging studies of orientation and direction preference in
visual cortex have typically used vector averaging to obtain angle
and magnitude maps. This method has shown half-rotation
orientation singularities (pinwheels) located within regions of low
orientation vector magnitude. Direction preference is generally
orthogonal to orientation preference, but often deviates from this,
particularly in regions of low direction vector magnitude. Linear
regions of rapid change in direction preference terminate in or near
orientation singularities. The vector-averaging method is problematic
however because it does not clearly disambiguate spatial variation
in orientation tuning width from variation in height. It may also
wrongly estimate preferred direction in regions where preference is
weak. In this paper we analyze optical maps of cat visual cortex by
fitting model tuning functions to the responses. This new method
reveals features not previously evident. Orientation tuning height and
width vary independently across the map: tuning height is always
low near singularities, however regions of broad and narrow orienta-
tion tuning width can be found in regions of low tuning height, often
alternating in a spoke-like fashion around singularities. Orientation
and direction preference angles are always closely orthogonal.
Reversals in direction preference form lines that originate precisely
in orientation singularities.

Introduction
Optical imaging studies of orientation and direction preference
in visual cortex have typically used vector averaging of responses
as a function of stimulus orientation or direction to obtain angle
and magnitude maps (Bonhoeffer and Grinvald, 1996). Such
studies have shown that the orientation map is characterized
by the presence of half-rotation singularities (or pinwheels)
which are surrounded by regions in which vector magnitude is
low. Direction preference is typically orthogonal to orientation
preference, with lines of reversal in preference beginning and
ending in, or near, the orientation singularities (Malonek et

al., 1994; Shmuel and Grinvald, 1996; Weliky et al., 1996).
Orientation and direction angles are often non-orthogonal
however, particularly in regions of low vector magnitude, near
the reversal lines and the singularities.

While vector averaging is a simple and fast way of computing
maps of orientation and direction angle from single-condition
images, it has drawbacks. Direction tuning curves obtained
by optical imaging are, as in single-unit data, bimodal, with two
peaks with variable relative heights, positions and widths. If
the two peaks are of nearly equal height, or not 180° apart, the
vector resultant angle may bear little relation to the position of
the higher peak, and will not accurately ref lect the direction of
motion to which that region of cortex was most responsive (Kim
et al., 1999; Kisvardáy et al., 2001). In addition, no information
about the relative positions and heights of the two peaks in
the direction tuning curve can be obtained, although these
parameters are of interest. Vector averaging is probably an
accurate way of estimating preferred orientation when applied

to orientation tuning data (Swindale, 1998). However the
interpretation of vector magnitude is problematic, since a low
magnitude may be caused by either a low overall responsiveness
of the point in question, or broad orientation tuning width.
Although it has been suggested that variations in vector
magnitude following division by the cocktail blank should ref lect
only variations in tuning width (Bonhoeffer et al., 1995), in
practice low vector magnitude has generally been regarded as
indicative of either low responsiveness or broad tuning, or a
combination of both [e.g. Bonhoeffer and Grinvald (Bonhoeffer
and Grinvald, 1991)].

In this paper we have studied orientation and direction angle,
tuning width and tuning height maps with an analysis method
that avoids the limitations of vector averaging. It works by
finding, at each location in the image, best-fitting model
functions of the orientation or direction tuning responses. For
orientation, the model is a circular normal (von Mises) function
with parameters describing the position, height and width of
the peak. For direction, the model is the sum of two such
functions, which are unconstrained in their relative heights,
widths and positions. We apply the method to optical data from
area 18 of the cat and show that it reveals features not evident
with vector averaging. Orientation and direction preference
angles are always closely orthogonal and reversals in direction
preference form lines that originate precisely in orientation
singularities. Orientation tuning height is low in blob-shaped
regions surrounding singularities. Bands of broad and narrow
orientation tuning width, and of low and high direction selec-
tivity, alternate in a spoke-like fashion around each singularity.

Materials and Methods

Data Acquisition
Single-condition images were obtained from area 18 of four anesthet-
ized, paralyzed cats, using standard methods in experiments reported
elsewhere (Shmuel and Grinvald, 1996, 2000). The stimuli were moving
high-contrast square-wave gratings with a spatial frequency of
0.15–0.18 c/deg, and a temporal frequency of 2.5–6.0 Hz, presented
binocularly. Sixteen directions of motion were used, spanning a 360°
range at intervals of 22.5°. For three of the datasets (referred to as datasets
1–3), a limited amount of post-processing of the images was performed.
Specifically, the images obtained during stimulation periods were divided
by the images obtained during control periods in which an equi-luminant
gray screen was presented. To remove slow noise of biological origin, a
first frame analysis (Bonhoeffer and Grinvald, 1996) was performed: the
first frame of the resulting division (corresponding to data obtained
during the 0.5 s period prior to the stimulus and prior to the acquisition
of the control) was subtracted from all subsequent frames. Division by the
cocktail blank was avoided, as this would normalize the tuning curves
and remove information about tuning height. It was noted that the mean
pixel value of each of the 16 single-condition images was different, and
these differences were not systematically related to stimulus orientation
or direction. This apparently random variability in image means could be
caused by slow spatial and temporal variations of blood volume during the
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period of data acquisition. To remove this source of variability, image
means were equalized by subtraction. Note that high-pass filtering would
have done this in any case, since this removes the DC component of each
image, in addition to other low frequencies. An additional justification for
the procedure is that the overall goodness-of-fit values were substantially
improved by it. The single-condition images were then smoothed by
convolution with a Gaussian kernel with width = 50 µm. No other type of
filtering was done. A fourth dataset (referred to as dataset 4) consisted of
single-condition images pre-processed as described in Shmuel and
Grinvald (Shmuel and Grinvald, 1996). This included division by the
cocktail blank followed by high-pass and low-pass filtering.

Data Analysis
For each pixel in the image, the data to be analyzed consist of an optical
response, measured at position (i, j) to one of N directions of motion,
n = 1 ... N. For the present data there were 16 such values for each pixel.
For each of these tuning curves we defined a baseline value, bi,j, as the
minimum of the response values for the pixel in question. We show
below that this baseline, or stimulus non-specific response level, varies
across the map, and has a structure that includes a spatially smooth,
slowly varying component, as well as blood vessel artifacts, which are
thereby removed from the analysis. Orientation and direction tuning
parameters are thus defined in terms of the response evoked above this
non-stimulus-specific background. Models in which the baseline was an
independently variable parameter, fit to the tuning curves [as in Sharon
and Grinvald (Sharon and Grinvald, 2002)] did not work well when
tuning curves were broad (as was often the case with the present data)
because tuning height and baseline values were insufficiently constrained
by the data values and could be very variable.

To standardize the goodness-of-fit values, tuning curves were rescaled
as follows: taking H(i, j) as the difference between the maximum and
minimum values of the responses at position (i, j) in the map, we define
Hmax as the largest value of H(i, j) taken across the whole map. Tuning
curves were rescaled by setting

R′i,j(ϕn) = 100 × (Ri,j(ϕn) – bi,j)/Hmax (1)

Following this, every tuning curve in the map has a minimum value of
zero, their shapes relative to each other remain unchanged, and all the
data points comprising the tuning curves in the map lie between 0 and
100. Goodness-of-fit values can be interpreted as distances on this scale
and compared between maps.

Analysis of Direction Tuning
Figure 1 (right panel) shows examples of optical direction tuning curves
scaled as described in the preceding section. They are bimodal with peaks
of varying relative height and width. Since orientation tuning curves are
well described by a single circular normal (von Mises) function (Swindale,
1998) we decided to model these bimodal tuning curves as the sum of
two circular normal functions, whose positions, heights and widths are
unconstrained. The model function was

M(ϕ) = A1exp{k1(cos(ϕ – ϕ1) – 1)} + A2exp{k2(cos(ϕ – ϕ1) – 1)} (2)

Here, M is the response, ϕ is the direction of stimulus motion, A1 and A2

are the heights of the individual peaks, ϕ1 and ϕ2 are the center directions
of each peak and k1 and k2 are inversely related to the widths of each
peak. Parameters A1, A2, ϕ1, ϕ2, k1 and k2 were adjusted to minimize the
sum-of-squares error (or goodness of fit) defined by

(3)

Preferred direction was defined as the center angle of whichever peak
was higher, i.e. it was defined as ϕ1 if A1 > A2, or as ϕ2 if A2 > A1. Direction
selectivity, D, was defined as

(4)

This has a value of zero if the two peaks are equal in height, and has a
maximum value of 1 if only one peak is present in the response.

Analysis of Orientation Tuning
Stimulus orientation was defined as the angle θ, at right angles to the
direction of motion, mod(180), i.e.

(5)

Pairs of responses obtained to stimulus conditions 180° apart were
averaged to obtain a single response at each of eight different stimulus
orientations. The following model function was then fit to the data points:

(6)

where O is the model response, θ is the stimulus orientation, B is the
maximum height of the orientation tuning curve, k is its width and θp is
the preferred orientation. The half-width of the tuning curve at half-
height, θ0.5 was calculated from k as

(7)

This is subject to the condition that k > –0.5 ln0.5. The value of k is still
meaningful if it is less than this, but it means that the tuning function is so
broad that it never has a value less than half its maximum height.

Least-squares Fitting
The Levenburg–Marquardt method (Press et al., 1994) was used to fit the
model functions to the data. Initial estimates of parameters were made as
follows: for direction tuning data, A1 = the maximum value of the data,
A2 = 0.8A1, k1 = k2 = 2.0 (ϕ0.5 = 50°), ϕ1 was set equal to the angle for
which response was maximum and ϕ2 = ϕ1 + 180°; for orientation data
the estimates were made similarly, with k = 0.59 (θ0.5 = 50°). During the
fits, the value(s) of k were constrained to be >0.1. This corresponds to a
tuning curve that is almost f lat. A fit was considered to have converged if
the change in the goodness of fit, ∆f < 10–5 for 10 successive iterations of
the fitting algorithm. After the fits, checks were made to ensure that
parameter values lay within acceptable bounds. The fit was rejected if
any of the following applied: (i) convergence had not occurred after 500
iterations; (ii) if the goodness of fit, f > 10.0; (iii) if B (or A1 or A2) < 0; (iv)
if θ0.5 < 15° or ϕ0.5 < 15°. When parameters fell outside these bounds, it
was clear from inspection that the tuning curve data were either noisy or
f lat with ill-defined peaks. These points tended to occur near the edges
of the maps. They were excluded from subsequent data analyses by
compiling separate masking images for the orientation and direction
tuning analysis data.

Analysis programs were written in Compaq Visual Fortran and run
under Windows 2000 on a 600 MHz Athlon PC. On average, it took
∼1.2 ms to fit a directional tuning function to a set of 16 data points, and
∼20–30 s to do a complete set of fits for an individual map.

Results

Goodness of Fit
Figure 1 shows examples of fits to orientation and direction data
taken from randomly selected sites in one map. Other examples
can be found in Figure 9. Table 1 gives averaged values of the
goodness-of-fit measure, f, for individual maps. The means of
these values for the four datasets studied were f = 2.9 for
orientation and f = 3.5 for direction. Since pixel values were
scaled to lie between 0 and 100, these values can be interpreted
as distances on the same scale.

Table 1 also gives, for comparison, the values of f obtained
when an angle-doubled cosine function (i.e. periodic over a 180°
range)  was  fit  to  the  orientation data,  and  when a cosine
function (periodic over a 360º range) was fit to the direction
data. The parameters adjusted in the fits were the absolute
height, amplitude and phases of the cosines. As shown else-
where (Swindale, 1998) vector averaging is mathematically
equivalent to using a cosine as a model tuning function. Thus
the phase angle returned by vector averaging will be identical to
that returned by a cosine fit. (This was confirmed numerically.)
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Table 1 shows that the cosine provided a slightly worse fit than
the model function for orientation tuning data, for all four
datasets (the average of f across all four maps was 3.6). Similarly,
the cosine provided a much worse fit (f = 9.9) for the directional
tuning data. This value was in fact only slightly better than that
obtained by fitting a horizontal line to the data, for which the
average value of f = 10.9.

Comparison with Estimates Obtained by Vector
Averaging
The estimates of orientation and direction obtained with the
model fits were compared with those obtained by vector
averaging (Fig. 2a,b). There is good agreement between the
estimates for orientation, but not for direction. Table 2 shows,
for each of the four datasets analyzed, the means and standard
deviations of the difference between the model and vector
estimates of orientation and direction angle. In all cases the mean
difference is close to zero, which is not surprising given the lack
of any expected systematic difference between the two types of
estimate (e.g. a clockwise orientation difference). The standard
deviations of the differences show by how much the estimates

tend to differ. For orientation, the differences are small, with
estimates generally being within about ±6° of each other. For
direction, the differences average about ±51°, indicating sub-
stantial disagreement between the methods. One reason for
considering the model-fitting estimate to be the better of the two
is that it corresponds more accurately to the angle of stimulus
motion that gives the largest cortical response. Reasons for these
large differences are considered further in the Discussion.

Relationship Between Orientation and Direction
Preference Angles
As in previous studies  (Malonek et al., 1994; Shmuel and
Grinvald, 1996; Weliky et al., 1996), we found that the vector
estimates of orientation and direction were often non-orthog-
onal (Fig. 2c). The model estimates, however, were much closer
to orthogonal (Fig. 2d). Table 3 shows the means and standard
deviations of the differences between direction and orientation
angles for the vector and model estimates. The mean differences
are close to 90° for both methods, which is expected given the
lack of any systematic clockwise or anticlockwise bias, but the

Figure 1. Examples of data and fitted model orientation (left panel) and direction (right
panel) tuning curves. The black rectangle on the x-axis shows the corresponding vector
estimate of orientation or direction. Note that for the direction data these estimates can
be different from the position of the maximum response. Each graph is the tuning data
from a single randomly selected pixel from dataset 1.

Table 1
Goodness-of-fit values for model and vector methods

Dataset Model orientation Model direction Cosine (vector)
orientation

Cosine (vector)
direction

1 3.20 3.92 4.23 11.98
2 3.61 4.10 3.99 8.65
3 2.44 2.99 2.95 7.90
4 2.47 2.90 3.39 11.1

Figure 2. Scatter-plots showing the relationships between vector and model
estimates of orientation and direction angle; each dot is a single map pixel: (a)
relationship between vector and model estimates of orientation; (b) relationship
between vector and model estimates of direction; (c) relationship between vector
estimate of orientation and vector estimate of direction; and (d) relationship between
model estimate of orientation and direction. Points come from dataset 3. For clarity, only
odd-numbered pixels are shown, i.e. one-quarter of the pixels in the map.

Table 2
Difference between model and vector estimates of angle

Set Orientation Direction

1 –0.0 ± 6.3° –1.1 ± 48.7°
2 –0.2 ± 8.6° –0.12 ± 51.8°
3 –0.1 ± 5.0° 0.32 ± 51.9°
4 –0.1 ± 4.5° 6.0 ± 50.0°
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standard deviations for the model fits (∼±9°) are substantially less
than those obtained with vector averaging (∼±41°).

The finding that orientation and direction preference angles
are always nearly orthogonal can be attributed to the empirical
observation that the two peaks in the direction tuning curves
are always close to 180° apart (Table 4). This means that the
angle given by the higher of the two peaks will generally be close
to the angle given by curve fitting when the two peaks are
averaged [i.e. angles on the x-axis taken modulo(180) rather than
modulo(360)]. This agreement will persist, even when the two
peaks are of similar height. In this case, however, the vector
method often returns angles that are different from the position
of either peak. Figure 3a shows that the difference between the
model and vector estimates of direction angle is largest for points
with low values of direction selectivity.

Spatial Layout of Orientation Tuning Parameters
Figures 4 and 5 show maps obtained from model fits of orienta-

Table 4
Difference between the two peaks in the direction tuning curves

Dataset Mean ± SD

1 180.6 ± 20.8°
2 180.9 ± 23.2°
3 181.1 ± 16.0°
4 178.7 ± 16.8°

Figure 3. (a–c) Relationships between selected map parameters. Each graph shows data from 1000 points taken at random (avoiding duplication) from dataset 1. Results from other
maps were qualitatively similar except for (c) where in datasets 2 and 3 fewer points with orientation tuning height values greater than 30 were present

Table 3
Difference between direction and orientation angles

Dataset Vector averaging Model fits

1 89.6 ± 39.6° 90.3 ± 9.2°
2 91.7 ± 42.4° 90.4 ± 11.3°
3 92.6 ± 39.6° 90.5 ± 7.0°
4 85.0 ± 43.1° 89.4 ± 8.3°

Figure 4. (top) Maps of parameters obtained by the model-fitting method. Singularity positions and signs are indicated by green (positive) and red (negative) asterisks or circles. (a)
Orientation angle; (b) direction angle, with white pixels indicating direction fractures; (c) orientation tuning width (half-width at half-height); (d) direction selectivity (D, equation 7;
low (dark) pixels mean low selectivity); (e) orientation tuning height (low height = dark); (f) relationship between fractures (black lines) in the direction map and positive and negative
orientation singularities. All maps are from dataset 1 and are at the same scale. Grey pixels in (a) and (b) are those masked out because of unacceptable fits; the same points are
shown in dark red in (c)–(e). Scale bar in (a) = 1 mm. Arrows indicate medial (M) and posterior (P) on the cortex.

Figure 5. (bottom) Maps of parameters obtained by the model-fitting method in dataset 3. Layout of panels and interpretation of grayscale values is the same as in Figure 4. Scale
bar in (a) = 1 mm. Arrows indicate anterior (A) and medial (M) directions.
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tion angle (Figs 4a and 5a), orientation tuning width (Figs 4c

and 5c) and orientation tuning height (Figs 4e and 5e). Positive
and negative singularities in the orientation map are shown in
Figures 4 and 5 as green (= positive) or red (= negative) asterisks
or circles. Positive singularities are defined as those for which
orientation values rotate in a clockwise direction as a clockwise
circuit is made around the singularity; negative singularities are
those where orientations rotate in an anticlockwise direction
for a clockwise circuit. The tuning height maps (Figs 4e and 5e)
resembled maps of vector magnitude, and contained circular or
elongated regions of low tuning height ∼200–400 µm in diam-
eter. An orientation singularity was present in many, although
not all, of such regions. Singularities were never found outside
regions of low tuning height.

One-dimensional profiles through the tuning height, width
and baseline maps were examined. Profiles passing through
singularities showed periodic increases and decreases in tuning
height and width, superimposed on an irregularly f luctuating
baseline level (Fig. 6). (The behavior of the baseline is considered
in more detail below.) We calculated how, on average, tuning
curve height and width varied as a function of radial distance
from a singularity. For this analysis, only singularities that were
more than 250 µm distant from any other singularity were
included, and the single-condition images from which the tuning
maps were derived were either not smoothed (datasets 1 and 3)
or minimally smoothed with a Gaussian of width σ = 25 µm
(dataset 2). Figure 7a–c shows the resulting functions, which are
similar for all three datasets. Average tuning width decreases
rapidly with distance from singularities, reaching a minimum at
425 µm (dataset 1) or 350 µm (datasets 2 and 3). It then rises,
and at a distance of ∼750 µm is similar to the average value taken
over the whole map. A similar, but inverted, pattern of variation
occurs in tuning height. However a closer comparison of the
functions, following inversion and scaling of the tuning height
function to match that of tuning width (Fig. 7d–f), shows that
the pattern of variation is not exactly the same: tuning width
falls off somewhat more rapidly than tuning height rises. On
average, tuning width falls to near baseline values at a distance of
175 µm (dataset 1) or 150 µm (datasets 2 and 3); tuning height
on the other hand rises to baseline values at distances of 225 µm
(dataset 1) and 200 µm (datasets 2 and 3).

The preceding analysis ignores the fact that the pattern of
variation of tuning width around singularities is often not
radially symmetric (Figs 4c, 5c, 8 and 9). Typically, although not
always, one or more regions of broad orientation tuning extend
from each singularity in a short strip (Figs 8b,c,e, f). Tuning
curve height remained low in these regions (Fig. 8, thin black
lines). Regions of narrow tuning width could be found close
(<100 µm) to singularities. Figure 9 shows examples of orienta-
tion tuning curves and variations in tuning width observed at

points close to, and in, a singularity. Similar patterns of variation
were seen in all four datasets.

There was a positive correlation between tuning width and
orientation gradient across the whole map (Fig. 3b): tuning
width was narrow in regions of low spatial rates of change of
orientation preference and vice versa (r = 0.68, 0.62 and 0.63
for datasets 1, 2 and 3, respectively). There was a negative,
L-shaped, correlation between tuning width and tuning height
(Fig. 3c): points with broad tuning always had low tuning height,
while highly responsive curves were always narrowly tuned.
However the reverse was not always the case, and narrow tuning
width could be associated with small as well as large tuning
heights.

In theory, if orientation tuning curves of different widths and
heights are normalized (by dividing by the sum of the responses,
or the cocktail blank) the vector magnitude will depend only on
the tuning width (Wörgötter and Eysel, 1987; Swindale, 1998).
A previous analysis that looked at variation in orientation
tuning curve width using this method (Bonhoeffer et al., 1995)
showed only a local isotropic broadening of selectivity close to
orientation singularities, unlike the changes observed in the
present study. We confirmed that this difference is due to our
subtraction of baseline activity from the single-condition maps
before analysis. If we did not do this subtraction, images of
the normalized vector magnitude showed a spatial pattern of
variation similar to that observed by Bonhoeffer et al.

(Bonhoeffer et al., 1995). If the baseline was subtracted before
normalization, the images of vector magnitude looked similar to
those seen in the tuning width maps obtained with the model
fitting method. We confirmed by calculations with model tuning
curves that adding a constant baseline response to orientation
tuning curves of different heights and widths re-introduces a
relationship between tuning height and vector magnitude
following normalization.

Spatial Layout of Direction Tuning Parameters
Angle maps of direction preference (Figs 4b and  5b) show
clearly defined iso-direction domains bounded in part by linear
‘fractures’ across which direction preference changes by 180°.
Figure 9b shows that these lines are not discontinuities but
represent points of equality in the heights of the two peaks in
the direction tuning curve. As reported previously in cat areas
17 (Kim et al., 1999) and 18 (Swindale et al., 1987; Shmuel and
Grinvald, 1996), owl monkey MT (Malonek et al., 1994) and
ferret area 17 (Weliky et al., 1996), these reversal lines appear to
begin and end close to singularities. However here the relation-
ship is even more clear, with odd numbers of fracture lines
terminating quite precisely at singularity locations.

The map of direction selectivity (Figs 4d and 5d) shows linear
regions of low selectivity (dark regions in the figure) that
coincide with the fractures, and abut singularities. Regions of

Figure 8. Patterns of variation of orientation tuning width (�) and height (—) around singularities. The left-hand axis shows tuning width in degrees at half height, and the right-hand
axis shows tuning height in scaled units. The x-axis shows distance in degrees around the circumference of a circle (white dots) around each singularity. Examples (a–c) are from
dataset 1 (circle radius = 0.25 mm), (d–f) are from dataset 2 (radius = 0.14 mm) and (g–i) are from dataset 3 (radius = 0.3 mm).

Figure 6. A one-dimensional transect through a portion of the map shown in Figure 4, showing the variation in orientation tuning height (�), tuning width (�) and the baseline signal
(—). The transect passes through 3 singularities.

Figure 7. Graphs showing the variation in average orientation tuning height (�), orientation tuning width (�) and the baseline signal (—) as a function of distance in microns from
singularity positions. Only points around singularities that were more than 250 µm distant from any other singularity were included in the analysis. (a) Dataset 1 (20 singularities); (b)
dataset 2 (14 singularities), (c) dataset 3 (13 singularities). The y-axis on the left gives tuning width in degrees at half-height; the y-axis on the right gives tuning curve and baseline
height in scaled units according to equation 1. A constant has been subtracted from the baseline values in each case for clarity. (d)–(f) show the height and width values for each of
the three datasets rescaled so the values at the origin = 100 and average values between 1000 and 1500 µm = 0.
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high selectivity lie in between the fracture lines, and, sur-
prisingly, can often be found close to singularities, opposite a
region of low selectivity. An increase in direction selectivity with
decreasing distance from a singularity implies that the height of
the smaller of the two peaks decreases at a faster rate than the
other peak as the singularity is approached. Figure 9c shows

examples of direction tuning curves obtained close to a
singularity.

Effects of Smoothing on Spatial Patterns of Tuning and
Responsiveness
While the complex patterns of tuning and responsiveness within

Figure 9. Tuning curves from specific map regions. Each region is 20 pixels, or 0.5 mm, wide. In all the graphs the vertical scaling (tick marks) is from 0 to 50, and the small black
rectangle indicates the angle or direction obtained from the same data by vector averaging. (a) An orientation tuning width map (bright pixels = broad tuning) around a central
singularity (green spot); the surrounding panels show orientation tuning data and the model fits from the indicated points. (The same singularity is shown in Fig. 8c.) Tuning widths
(half-width at half-height in degrees) are shown for each tuning curve in the top left of each panel. Horizontal axes run from 0 to 180º. (b) Portion of a direction angle map showing
direction fractures (white lines); right-hand panels show direction tuning curves from indicated points in the map. Horizontal axes run from 0 to 360º. Note that the relative height of
the two peaks changes across the fracture; on the fracture itself the heights are nearly the same. (c) Variation in direction tuning around an orientation singularity (red spot) at the
center of the panel where a direction fracture (white line) terminates.
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the pinwheel regions are of interest, they do not necessarily
ref lect the properties of individual neurons in the same regions
or even the mean activities of neurons in the imaged location.
Light scattering, blurring caused by signals from out-of-focus
layers, the spatially smooth (or blurred) nature of the hemo-
dynamic signal, and smoothing done after the images have been
acquired might affect the signals from regions where properties
are changing relatively rapidly. We investigated this possibility in
two ways. First, we examined data where no post-acquisition
smoothing of any kind had been done. As expected, the angle,
height and width maps were noisier, but the pattern of
orientation tuning height and width, and of direction selectivity,

around the singularities and elsewhere was similar to that
observed with the smoothed data. As a second test we took the
angle maps of orientation and direction preference resulting
from the model fits, and then generated simulated single-
condition images assuming a fixed tuning height, a fixed tuning
half-width at half-height of 30° and a fixed direction selectivity,
D = 0.20. We then smoothed the simulated single-condition
maps with a Gaussian kernel with widths, σ, varying from 20 to
300 µm. New tuning width and selectivity maps were then
calculated. For intermediate amounts of smoothing (σ ∼ 150 µm)
the control maps  resembled the real ones  in  their general
appearance (Fig. 10a–d). The similarity was further evaluated by

Figure 10. Control for the effect of optical blur on orientation tuning width and direction selectivity. (a) and (b) are the original width and selectivity maps; (c) and (d) are control
images, obtained as described in the text after smoothing single-condition images with an isotropic Gaussian with a width σ = 150 µm. Images are from dataset 3. The relationship
between the grayscale values and tuning values are the same for the control and normal cases; (e) and (f): the relationship between selectivity measures observed experimentally
(x-axes) and values resulting from the Gaussian smoothing controls (y-axes) described in the text, with a smoothing radius σ = 150 µm. (e) is for orientation tuning width (degrees
at half height) and (f) is for direction selectivity, D (equation 4). Dashed lines are fit by linear regression to the data points; the solid lines show y = x.
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calculating, for  each pair of  control  and real maps, and a
particular smoothing width: (i) the correlation between the
orientation tuning width values; (ii) the slope of the correlation,
and (iii) the root mean square (r.m.s.) of the difference in
the values. A similar analysis was done for direction selectivity.
Table 5 shows the results for tuning width for dataset 1 for a
variety of smoothing widths. (Values for datasets 2 and 3 show
smaller correlations, smaller slopes and larger r.m.s. difference
values.) While strong positive correlations between the meas-
ured and control tuning width values were found, the slopes of
the correlations were substantially less than 1 across a range
of smoothing width values (Fig. 10e, f). This was true for both
orientation tuning width and direction selectivity values (Table
6), in all three of the datasets that were tested. Additional tests
with a range of initial selectivity values and smoothing widths
were done (data not shown), and these gave no indication that
other combinations of parameters would give closer similarity
between the real and control maps. These results suggest that
the observed variations in orientation tuning and direction
selectivity can be only partly explained (or modeled) as the
result of isotropic Gaussian blurring of signals. The remaining
variations may be real, perhaps caused by network interactions
that are not locally isotropic or are non-Gaussian in character.

The Baseline Response
A priori it seems likely that the baseline signal, b (i.e. the
minimum response value at each pixel; see Materials and
Methods) might be a mixture of blood vessel artifacts common
to all images, spatial f luctuations in the hemodynamic signal
unrelated to the stimuli, and real variations in stimulus-
non-specific responses. These possibilities are consistent with
the appearance of the baseline images (Figs 6 and 11) inasmuch
as they contain low-spatial frequency variations, and bright
streaks that coincide with the blood vessels observed in the
mapped regions (images not shown). Further examination of the
images suggested a weak tendency for some singularities to be
located in regions where there was a small local elevation in the
baseline. Overall correlations (i.e. taken over an entire map)
between orientation tuning height and baseline (Table 7) were
positive in two cases (datasets 1 and 3) and close to zero in the
other (dataset 2). However these correlations represent trends
averaged over the entire map, and an opposite trend might be
present locally, in regions of low tuning height close to
singularities. To test for that, we calculated the average of the
baseline signal as a function of radial distance from a singularity,
in the same way that we calculated the variation in tuning height
and width. The resulting functions showed an increase in
baseline with decreasing distance from singularities for all three
non-normalized datasets (Fig. 7a–c). We observed that the
baseline increase was often not clearly evident at individual
singularities (e.g. Fig. 11) and that there were many regions (e.g.
the right-hand side of Fig. 6) where pronounced height and
width variations occurred that were not systematically related to
the variation in baseline magnitude.

Discussion

Comparison of the Model and Vector Methods
Vector averaging  treats optical  responses  as vectors whose
length is proportional to the response and whose angle relative
to the origin is given by either twice the stimulus orientation, or
by the direction of stimulus motion. In the latter case, the
resultant angle gives the estimated direction preference, while
for orientation the angle of the resultant is halved to find the

estimated best orientation. Mathematically, these procedures are
identical to performing a least-squares fit of a cosine function
with variable phase and amplitude (Swindale, 1998). They are
also identical to finding the phase angle of the first and second
harmonic Fourier components of the data (Wörgötter and Eysel,
1987). It has been shown that a cosine provides a much less good
description of single-unit orientation tuning data than does the
circular normal function (Swindale, 1998). In the present study,
the mean goodness of fit obtained with an angle-doubled cosine
was only slightly worse than the value obtained by fitting the
model function (Table 1). Accordingly, estimates of preferred
orientation did not differ substantially between the two
methods, although it is reasonable to expect that the model
estimate should be the better of the two. In contrast, a cosine is
a priori a bad description of directional tuning data, since a
function with one peak is being fit to data in which two peaks
are generally present. When a cosine was fit to the direction
tuning data, the mean goodness of fit was substantially worse
than the value obtained by fitting the model function and was
only slightly better than the value obtained by fitting a horizontal
line (the r.m.s. value of the points in each tuning curve about
their mean). Vector averaging gives reasonably accurate esti-
mates of the position of the higher of the two peaks when one is
substantially higher than the other, however in regions of low
direction selectivity the angles returned may bear little relation
to the position of either peak [Figs 1, 3a, 9b, middle graph; see

Table 5
Comparison of observed and control orientation tuning width values in dataset 1

Smoothing radius (µm) r2 Slope r.m.s. difference

0 0 0 14.3
20 0.52 0.02 14.1
50 0.46 0.11 13.0
75 0.50 0.15 12.3
100 0.49 0.18 11.6
150 0.37 0.20 10.6
200 0.28 0.21 10.1
250 0.17 0.19 10.1
300 0.14 0.20 10.1

Table 6
Comparison of observed and control direction selectivity values in dataset 1

Smoothing radius (µm) r2 Slope r.m.s. difference

0 0 0 0.12
20 0.25 0.08 0.11
50 0.41 0.29 0.10
75 0.50 0.36 0.09
100 0.52 0.39 0.09
150 0.46 0.39 0.10
200 0.31 0.34 0.12
250 0.19 0.27 0.13
300 0.11 0.21 0.14

Table 7
Correlation between baseline activity and orientation tuning height

Dataset r2 Slope

1 0.10 0.30
2 0.003 0.02
3 0.35 0.42
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also Fig. 10a in Shmuel and Grinvald (Shmuel and Grinvald,
1996), or Fig. 2a in Weliky et al. (Weliky et al., 1996)]. Errors
can occur even when the two peaks are dissimilar in height (e.g.
Figure 1, second graph from top in right-hand column). With the
model fitting method the direction preference angle is almost
always closely orthogonal to the angle of orientation preference.
As a result, iso-direction domains have sharply defined bound-
aries that intersect the direction fracture lines at well defined
angles (Figs 4b and 5b).

Comparison of the Model Method with Previous
Approaches
Other authors have pointed out the weakness of the vector
method when applied to direction tuning data. Alternatives
proposed involve interpolating between data points to estimate

the maximum (Kim et al., 1999) or simply taking the direction
for which response is maximum (Kisvardáy et al., 2001). We
believe that our solution to the problem may have advantages
over these methods. First, neither method yields parameter
values that correspond to aspects of tuning curve shape other
than the position of the peak. Secondly, simply taking the
position of the maximum response (Kisvardáy et  al., 2001)
ignores information in the rest of the tuning curve data that
could be used to establish the position of the peak more
precisely. For this reason, the method is likely to perform poorly
when tested with noisy data. The interpolation method (Kim et

al., 1999) does not have this problem. It has the advantage over
our method of not requiring iterative least-squares fitting, and is
similar inasmuch as it involves an implied fit to the tuning curve
data of a model function that is the sum of a series of sine and

Figure 11. Images showing the variation in the baseline level, b (as defined in the Methods), across the map (left panels), together with the corresponding orientation tuning height
maps (right panels). Brightness scaling is the same for both types of map: here, bright pixels correspond to an increase in optical response or an increase in tuning curve height.
Singularity locations are indicated by asterisks (green = positive, red = negative). (a) Images from dataset 1, (b) images from dataset 2, (c) images from dataset 3.
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cosine terms. A direct comparison of this method and ours
would require comparing the goodness of fit of each model
function to the data, the assumption being that the model giving
the better fit gives the better estimation of direction preference.
Neither of the previous methods addresses, as does ours, the
issue of disambiguating variations in tuning height and tuning
width. Our method has the further advantage of offering criteria
for accepting or rejecting data from different regions of a
mapped area. A suitable threshold can be chosen and, if the
goodness of fit exceeds it, the data point in question can be
excluded from subsequent analysis. If the fitting process does
not converge, or returns parameters that are outside expected
ranges it is likely that the data being analyzed are noisy or
uninformative and should be excluded from subsequent
analyses.

The Relationship Between Orientation and Direction
Preference
Our method does not rigidly constrain orientation and direction
preferences to be orthogonal but it may be biased to do so
because we have defined, as is conventional, the direction of
motion of the stimulus as orthogonal to its orientation. Whether
or not orientation and direction preferences are orthogonal
is arguably an empirical question that can only be answered
by using stationary oriented stimuli to measure orientation
preference, and moving dots to measure direction preference.
Such data as exist suggest that these types of stimuli yield
orientation and direction maps similar to those obtained with
moving gratings. For example, orientation maps obtained with
stationary, phase-reversing gratings are similar to those obtained
with moving gratings (A. Shmuel and A. Grinvald, unpublished
results). Likewise, the spatial pattern of regions responding
differentially to directions of motion 180º apart is similar for
moving dots, moving bars or moving grating stimuli [Fig. 5 in
(Shmuel and Grinvald, 1996)].

Directional tuning curves obtained in single cell recordings in
which noise patterns are used as stimuli are often bimodal with
peaks symmetrically placed on either side of the direction
preference for gratings (Hammond and Reck, 1980). The spacing
between these peaks increases with the velocity of the stimulus.
This suggests that direction and orientation preference can vary
independently, are often non-orthogonal and even, for direction,
non-unique. However such bimodal responses can probably be
explained by spatio-temporal filtering of random noise by an
oriented receptive field in which temporally specific inter-
actions are exerted symmetrically along the cell’s orientation
axis (Skottun et al., 1994). This symmetry would in fact
guarantee orthogonal orientation and direction preferences for
stationary versus moving gratings.

The Baseline Response
Measurement of orientation tuning width requires the
establishment of a baseline in order that a width at half-height
can be calculated. We defined the baseline as the part of the
optical response that is common to all the stimuli, i.e. the
minimum response taken across all the stimulus conditions for
each pixel in the image. One reason for defining tuning
parameters in this way is that a portion of the optical response
to a stimulus is always non-specific and independent of the
particular stimulus, i.e. the orientation or direction of motion
(Bonhoeffer and Grinvald, 1996). This component of the optical
signal, termed the ‘non-mapping signal’ might be caused by
synaptic activity (Logothetis et al., 2001), or in part by neuronal
spiking activity. It may also ref lect spatially non-specific hemo-

dynamic responses (Malonek and Grinvald, 1996). However
it is difficult if not impossible to separate these putative
components. We suggest that the best way of dealing with this
problem is to define the mapping signal as we have done here, in
terms of the height above a common background.

Our analysis suggests that, on average, the baseline signal is
larger near singularity locations than elsewhere (Figs 7 and 11).
Possible reasons for this include: (i) hemodynamic and/or optical
blurring, which would be expected to elevate the baseline in
regions of high orientation gradient; (ii) increased broadening of
tuning curve width near singularities, which may result in an
artifactual elevation in the measured baseline, since if there is a
response component at the orthogonal orientation it will be
subtracted out by our method; (iii) sub-threshold neural
responses which may be larger near singularities (Schummers
et al., 2001); and finally, (iv) an increase in the stimulus non-
specific physiological spiking response at or near singularities.
Regarding the latter, single-unit recording studies have demon-
strated small responses to the non-preferred orientation in some
neurons in cats (Azouz et al., 1997) and monkeys (Ringach et

al., 2002); however, whether these responses increase near
singularities is not yet known. The possible consequences for
our results, if explanations (i) and (ii) are correct, are that, near
singularities,  tuning  widths  may be  broader,  and response
heights larger, than our analysis suggests. It is important to
note, however, that there is not an obvious, systematic relation
between baseline height and tuning curve height and width that
is clearly evident at all singularities. Thus it seems unlikely that
the height and width variations that we see are distorted
significantly by the subtraction of the baseline as we have
defined it.

The Spatial Pattern of Orientation Tuning Width and
Height
Our results show, we believe for the first time, that orientation
tuning width and height vary independently across the surface
of the cortex (Fig. 8). Tuning height correlates well with vector
magnitude, and varies in the way previously described for it
(Blasdel and Salama, 1986; Bonhoeffer and Grinvald, 1991, 1993;
Blasdel, 1992). It is low in blob-shaped regions ∼500 µm in
diameter (Figs 4–6), nearly all of which contain an orientation
singularity. Tuning width varies in a pattern that has not been
reported before. It is broadest in narrow punctate or elongated
regions that coincide exactly with the singularities, around
which regions of narrow and wide tuning width often alternate
in a spoke-like fashion (Figs 4c, 5c, 8 and 9a).

The finding of regions of high orientation selectivity close to
singularities (i.e. within 200 µm), albeit with low response
magnitudes, is consistent with single-unit studies that have
reported that the selectivities of neurons close to singularities
are as high as they are elsewhere (Maldonado et al., 1997).
Systematic variations in tuning width also occur in regions
distant from the singularities. The strong correlation between
width and the orientation gradient (Fig. 3b) suggests that
blurring might be a cause of width variations, since it would be
expected to broaden tuning curves most in regions where
orientation gradient was largest. Control calculations confirmed
that isotropic Gaussian blurring can reproduce some, although
not all, of the observed variation in tuning width (Fig. 10).
Blur could be caused by signals from out of focus layers and
by the local averaging of neural activity that determines the
hemodynamic response that ultimately gives rise to the optical
signal. Local physiological interactions may also mimic blur.
These interactions could be mediated by the dense network of
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local (<400 µm) intracortical connections which has been
shown to be unselective for orientation in the supragranular
layers (Malach et al., 1993; Bosking et al., 1997). Assuming that
feed-forward and other sources of input endowed all neurons in
the map with the same initial degree of selectivity, these connec-
tions would have the effect of smoothing the tuning curves of
individual neurons in much the same way as was done here in
our control calculations, thereby inducing a positive correlation
between tuning width and orientation gradient.

Evidence that the variations in tuning width are not
completely the result of either optical or hemodynamic blur-
ring of signals comes from tetrode recording experiments
(Hetherington and Swindale, 1999) which showed a strong
positive correlation between orientation tuning width  and
variation of orientation preference among groups of nearby
neurons. This is consistent with the correlation between
orientation gradient and tuning width observed here (Fig. 3b).
Further evidence for physiological variations in tuning width
across the map and around singularities comes from a study
that combined intracellular recording with optical imaging of
intrinsic signals (Schummers et al., 2001). The orientation
tuning width of membrane potentials of neurons in the vicinity
of singularities was found to be wider on average than else-
where. This suggests that the tuning width of a neuron is a
function of the distribution of orientation preferences of
neurons in its immediate vicinity. Since synaptic activity
provides a major contribution to the hemodynamic response
(Logothetis et al., 2001), Schummers et al.’s findings suggest that
the spatial variations of tuning width (Figs 4c and 5c) represent
similar variations in the tuning of the underlying electrical
activity.

Although control calculations show that isotropic Gaussian
blurring can reproduce some of the observed variation in tuning
widths, it cannot account for all of it (Fig. 10, Table 5). Thus
non-isotropic or non-Gaussian local network interactions
(Bosking et al., 1997; Sincich and Blasdel, 2001) may need to be
invoked to explain the correlation between orientation gradient
and tuning width.

The Direction Fractures
A topological argument (Swindale et al., 1987) shows that, given
half-rotation orientation singularities and an orthogonal
relationship between direction and orientation preferences, at
least one or an odd number of direction fracture lines must
connect  with each orientation  singularity. This was clearly
observed in the present study. Similar direction fracture regions,
bearing the same relationship to orientation singularities, have
been described before (Swindale et al., 1987; Malonek et al.,
1994; Shmuel and Grinvald, 1996; Weliky et al., 1996; Kim et al.,
1999; Kisvardáy et al., 2001). However, with the exception of
the last two of these studies, which did not use vector averaging,
the relationship between regions of high direction gradient and
the singularities was not as clear-cut as seen here. This is almost
certainly the result of deviations from orthogonality produced by
the vector method, which tend to be greatest near orientation
singularities and direction fractures. As a result, the direction
fractures often terminate near a singularity, rather than in the
singularity itself.

Direction fracture lines appear to have a tendency to
equidistant spacing, and it is hard to find circular regions with
a diameter larger than ∼0.75 mm within which one or more
fracture lines do not occur. This is true even in regions that lack
orientation singularities (e.g. Fig. 5f). Such behaviors might be
expected on the grounds of coverage uniformity (Swindale,

1991), i.e. that the cortex attempts to represent all possible
directions of motion as uniformly as possible across the map, as
seems to be true for other parameters (Swindale et al., 2000).
Having the fracture lines divide iso-orientation domains into
equally sized sub-regions preferring opposite directions of
motion might be one way to do this. Fractures also have a
tendency to run in straight lines before suddenly changing
direction. While this behavior tends to minimize their length,
there must be other constraints on their arrangement. It would
certainly be possible to connect the singularities (e.g. in Fig. 4f)
by shorter routes than the ones actually present. However, such
an arrangement, although it would give a more continuous
direction map, might give poorer coverage. It remains to be seen
whether or not the arrangement of direction fractures that we
observe represents an optimal trade-off between smoothness
and coverage constraints.
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